Metamath Proof Explorer


Theorem fuciso

Description: A natural transformation is an isomorphism of functors iff all its components are isomorphisms. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q = C FuncCat D
fuciso.b B = Base C
fuciso.n N = C Nat D
fuciso.f φ F C Func D
fuciso.g φ G C Func D
fuciso.i I = Iso Q
fuciso.j J = Iso D
Assertion fuciso φ A F I G A F N G x B A x 1 st F x J 1 st G x

Proof

Step Hyp Ref Expression
1 fuciso.q Q = C FuncCat D
2 fuciso.b B = Base C
3 fuciso.n N = C Nat D
4 fuciso.f φ F C Func D
5 fuciso.g φ G C Func D
6 fuciso.i I = Iso Q
7 fuciso.j J = Iso D
8 1 fucbas C Func D = Base Q
9 1 3 fuchom N = Hom Q
10 funcrcl F C Func D C Cat D Cat
11 4 10 syl φ C Cat D Cat
12 11 simpld φ C Cat
13 11 simprd φ D Cat
14 1 12 13 fuccat φ Q Cat
15 8 9 6 14 4 5 isohom φ F I G F N G
16 15 sselda φ A F I G A F N G
17 eqid Base D = Base D
18 eqid Inv D = Inv D
19 13 ad2antrr φ A F I G x B D Cat
20 relfunc Rel C Func D
21 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
22 20 4 21 sylancr φ 1 st F C Func D 2 nd F
23 2 17 22 funcf1 φ 1 st F : B Base D
24 23 adantr φ A F I G 1 st F : B Base D
25 24 ffvelrnda φ A F I G x B 1 st F x Base D
26 1st2ndbr Rel C Func D G C Func D 1 st G C Func D 2 nd G
27 20 5 26 sylancr φ 1 st G C Func D 2 nd G
28 2 17 27 funcf1 φ 1 st G : B Base D
29 28 adantr φ A F I G 1 st G : B Base D
30 29 ffvelrnda φ A F I G x B 1 st G x Base D
31 eqid Inv Q = Inv Q
32 8 31 14 4 5 6 isoval φ F I G = dom F Inv Q G
33 32 eleq2d φ A F I G A dom F Inv Q G
34 8 31 14 4 5 invfun φ Fun F Inv Q G
35 funfvbrb Fun F Inv Q G A dom F Inv Q G A F Inv Q G F Inv Q G A
36 34 35 syl φ A dom F Inv Q G A F Inv Q G F Inv Q G A
37 33 36 bitrd φ A F I G A F Inv Q G F Inv Q G A
38 37 biimpa φ A F I G A F Inv Q G F Inv Q G A
39 1 2 3 4 5 31 18 fucinv φ A F Inv Q G F Inv Q G A A F N G F Inv Q G A G N F x B A x 1 st F x Inv D 1 st G x F Inv Q G A x
40 39 adantr φ A F I G A F Inv Q G F Inv Q G A A F N G F Inv Q G A G N F x B A x 1 st F x Inv D 1 st G x F Inv Q G A x
41 38 40 mpbid φ A F I G A F N G F Inv Q G A G N F x B A x 1 st F x Inv D 1 st G x F Inv Q G A x
42 41 simp3d φ A F I G x B A x 1 st F x Inv D 1 st G x F Inv Q G A x
43 42 r19.21bi φ A F I G x B A x 1 st F x Inv D 1 st G x F Inv Q G A x
44 17 18 19 25 30 7 43 inviso1 φ A F I G x B A x 1 st F x J 1 st G x
45 44 ralrimiva φ A F I G x B A x 1 st F x J 1 st G x
46 16 45 jca φ A F I G A F N G x B A x 1 st F x J 1 st G x
47 14 adantr φ A F N G x B A x 1 st F x J 1 st G x Q Cat
48 4 adantr φ A F N G x B A x 1 st F x J 1 st G x F C Func D
49 5 adantr φ A F N G x B A x 1 st F x J 1 st G x G C Func D
50 simprl φ A F N G x B A x 1 st F x J 1 st G x A F N G
51 13 ad2antrr φ A F N G x B A x 1 st F x J 1 st G x y B D Cat
52 23 adantr φ A F N G x B A x 1 st F x J 1 st G x 1 st F : B Base D
53 52 ffvelrnda φ A F N G x B A x 1 st F x J 1 st G x y B 1 st F y Base D
54 28 adantr φ A F N G x B A x 1 st F x J 1 st G x 1 st G : B Base D
55 54 ffvelrnda φ A F N G x B A x 1 st F x J 1 st G x y B 1 st G y Base D
56 simprr φ A F N G x B A x 1 st F x J 1 st G x x B A x 1 st F x J 1 st G x
57 fveq2 x = y A x = A y
58 fveq2 x = y 1 st F x = 1 st F y
59 fveq2 x = y 1 st G x = 1 st G y
60 58 59 oveq12d x = y 1 st F x J 1 st G x = 1 st F y J 1 st G y
61 57 60 eleq12d x = y A x 1 st F x J 1 st G x A y 1 st F y J 1 st G y
62 61 rspccva x B A x 1 st F x J 1 st G x y B A y 1 st F y J 1 st G y
63 56 62 sylan φ A F N G x B A x 1 st F x J 1 st G x y B A y 1 st F y J 1 st G y
64 17 7 18 51 53 55 63 invisoinvr φ A F N G x B A x 1 st F x J 1 st G x y B A y 1 st F y Inv D 1 st G y 1 st F y Inv D 1 st G y A y
65 1 2 3 48 49 31 18 50 64 invfuc φ A F N G x B A x 1 st F x J 1 st G x A F Inv Q G y B 1 st F y Inv D 1 st G y A y
66 8 31 47 48 49 6 65 inviso1 φ A F N G x B A x 1 st F x J 1 st G x A F I G
67 46 66 impbida φ A F I G A F N G x B A x 1 st F x J 1 st G x