Metamath Proof Explorer


Theorem fucolid

Description: Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
fucolid.i I = Id Q
fucolid.q Q = D FuncCat E
fucolid.a φ A G C Nat D H
fucolid.f φ F D Func E
Assertion fucolid φ I F F G P F H A = x Base C 1 st G x 2 nd F 1 st H x A x

Proof

Step Hyp Ref Expression
1 fucolid.p Could not format ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
2 fucolid.i I = Id Q
3 fucolid.q Q = D FuncCat E
4 fucolid.a φ A G C Nat D H
5 fucolid.f φ F D Func E
6 eqid Id E = Id E
7 3 2 6 5 fucid φ I F = Id E 1 st F
8 7 oveq1d φ I F F G P F H A = Id E 1 st F F G P F H A
9 eqid C Nat D = C Nat D
10 9 4 nat1st2nd φ A 1 st G 2 nd G C Nat D 1 st H 2 nd H
11 9 10 natrcl2 φ 1 st G C Func D 2 nd G
12 11 funcrcl2 φ C Cat
13 11 funcrcl3 φ D Cat
14 5 func1st2nd φ 1 st F D Func E 2 nd F
15 14 funcrcl3 φ E Cat
16 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
17 12 13 15 16 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
18 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
19 17 18 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
20 1 opeq2d Could not format ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
21 19 20 eqtrd Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
22 eqidd φ F G = F G
23 eqidd φ F H = F H
24 eqid D Nat E = D Nat E
25 3 24 6 5 fucidcl φ Id E 1 st F F D Nat E F
26 21 22 23 4 25 fuco22a φ Id E 1 st F F G P F H A = x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x
27 eqid Base D = Base D
28 eqid Base E = Base E
29 14 adantr φ x Base C 1 st F D Func E 2 nd F
30 27 28 29 funcf1 φ x Base C 1 st F : Base D Base E
31 eqid Base C = Base C
32 9 10 natrcl3 φ 1 st H C Func D 2 nd H
33 31 27 32 funcf1 φ 1 st H : Base C Base D
34 33 ffvelcdmda φ x Base C 1 st H x Base D
35 30 34 fvco3d φ x Base C Id E 1 st F 1 st H x = Id E 1 st F 1 st H x
36 35 oveq1d φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x
37 eqid Hom E = Hom E
38 15 adantr φ x Base C E Cat
39 31 27 11 funcf1 φ 1 st G : Base C Base D
40 39 ffvelcdmda φ x Base C 1 st G x Base D
41 30 40 ffvelcdmd φ x Base C 1 st F 1 st G x Base E
42 eqid comp E = comp E
43 30 34 ffvelcdmd φ x Base C 1 st F 1 st H x Base E
44 eqid Hom D = Hom D
45 27 44 37 29 40 34 funcf2 φ x Base C 1 st G x 2 nd F 1 st H x : 1 st G x Hom D 1 st H x 1 st F 1 st G x Hom E 1 st F 1 st H x
46 10 adantr φ x Base C A 1 st G 2 nd G C Nat D 1 st H 2 nd H
47 simpr φ x Base C x Base C
48 9 46 31 44 47 natcl φ x Base C A x 1 st G x Hom D 1 st H x
49 45 48 ffvelcdmd φ x Base C 1 st G x 2 nd F 1 st H x A x 1 st F 1 st G x Hom E 1 st F 1 st H x
50 28 37 6 38 41 42 43 49 catlid φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = 1 st G x 2 nd F 1 st H x A x
51 36 50 eqtrd φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = 1 st G x 2 nd F 1 st H x A x
52 51 mpteq2dva φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = x Base C 1 st G x 2 nd F 1 st H x A x
53 8 26 52 3eqtrd φ I F F G P F H A = x Base C 1 st G x 2 nd F 1 st H x A x