Metamath Proof Explorer


Theorem fucolid

Description: Post-compose a natural transformation with an identity natural transformation. (Contributed by Zhi Wang, 11-Oct-2025)

Ref Expression
Hypotheses fucolid.p No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
fucolid.i I = Id Q
fucolid.q Q = D FuncCat E
fucolid.a φ A G C Nat D H
fucolid.f φ F D Func E
Assertion fucolid φ I F F G P F H A = x Base C 1 st G x 2 nd F 1 st H x A x

Proof

Step Hyp Ref Expression
1 fucolid.p Could not format ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. C , D >. o.F E ) ) = P ) with typecode |-
2 fucolid.i I = Id Q
3 fucolid.q Q = D FuncCat E
4 fucolid.a φ A G C Nat D H
5 fucolid.f φ F D Func E
6 eqid Id E = Id E
7 3 2 6 5 fucid φ I F = Id E 1 st F
8 7 oveq1d φ I F F G P F H A = Id E 1 st F F G P F H A
9 eqid C Nat D = C Nat D
10 9 4 nat1st2nd φ A 1 st G 2 nd G C Nat D 1 st H 2 nd H
11 9 10 natrcl2 φ 1 st G C Func D 2 nd G
12 11 funcrcl2 φ C Cat
13 11 funcrcl3 φ D Cat
14 eqid D Nat E = D Nat E
15 3 14 6 5 fucidcl φ Id E 1 st F F D Nat E F
16 14 15 nat1st2nd φ Id E 1 st F 1 st F 2 nd F D Nat E 1 st F 2 nd F
17 14 16 natrcl2 φ 1 st F D Func E 2 nd F
18 17 funcrcl3 φ E Cat
19 eqidd Could not format ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = ( <. C , D >. o.F E ) ) with typecode |-
20 12 13 18 19 fucoelvv Could not format ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) e. ( _V X. _V ) ) with typecode |-
21 1st2nd2 Could not format ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ( <. C , D >. o.F E ) e. ( _V X. _V ) -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
22 20 21 syl Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. ) with typecode |-
23 1 opeq2d Could not format ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. C , D >. o.F E ) ) , ( 2nd ` ( <. C , D >. o.F E ) ) >. = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
24 22 23 eqtrd Could not format ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) : No typesetting found for |- ( ph -> ( <. C , D >. o.F E ) = <. ( 1st ` ( <. C , D >. o.F E ) ) , P >. ) with typecode |-
25 eqidd φ F G = F G
26 eqidd φ F H = F H
27 24 25 26 4 15 fuco22a φ Id E 1 st F F G P F H A = x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x
28 eqid Base D = Base D
29 eqid Base E = Base E
30 17 adantr φ x Base C 1 st F D Func E 2 nd F
31 28 29 30 funcf1 φ x Base C 1 st F : Base D Base E
32 eqid Base C = Base C
33 9 10 natrcl3 φ 1 st H C Func D 2 nd H
34 32 28 33 funcf1 φ 1 st H : Base C Base D
35 34 ffvelcdmda φ x Base C 1 st H x Base D
36 31 35 fvco3d φ x Base C Id E 1 st F 1 st H x = Id E 1 st F 1 st H x
37 36 oveq1d φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x
38 eqid Hom E = Hom E
39 18 adantr φ x Base C E Cat
40 32 28 11 funcf1 φ 1 st G : Base C Base D
41 40 ffvelcdmda φ x Base C 1 st G x Base D
42 31 41 ffvelcdmd φ x Base C 1 st F 1 st G x Base E
43 eqid comp E = comp E
44 31 35 ffvelcdmd φ x Base C 1 st F 1 st H x Base E
45 eqid Hom D = Hom D
46 28 45 38 30 41 35 funcf2 φ x Base C 1 st G x 2 nd F 1 st H x : 1 st G x Hom D 1 st H x 1 st F 1 st G x Hom E 1 st F 1 st H x
47 10 adantr φ x Base C A 1 st G 2 nd G C Nat D 1 st H 2 nd H
48 simpr φ x Base C x Base C
49 9 47 32 45 48 natcl φ x Base C A x 1 st G x Hom D 1 st H x
50 46 49 ffvelcdmd φ x Base C 1 st G x 2 nd F 1 st H x A x 1 st F 1 st G x Hom E 1 st F 1 st H x
51 29 38 6 39 42 43 44 50 catlid φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = 1 st G x 2 nd F 1 st H x A x
52 37 51 eqtrd φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = 1 st G x 2 nd F 1 st H x A x
53 52 mpteq2dva φ x Base C Id E 1 st F 1 st H x 1 st F 1 st G x 1 st F 1 st H x comp E 1 st F 1 st H x 1 st G x 2 nd F 1 st H x A x = x Base C 1 st G x 2 nd F 1 st H x A x
54 8 27 53 3eqtrd φ I F F G P F H A = x Base C 1 st G x 2 nd F 1 st H x A x