Metamath Proof Explorer


Theorem funcnvmpt

Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017)

Ref Expression
Hypotheses funcnvmpt.0 xφ
funcnvmpt.1 _xA
funcnvmpt.2 _xF
funcnvmpt.3 F=xAB
funcnvmpt.4 φxABV
Assertion funcnvmpt φFunF-1y*xAy=B

Proof

Step Hyp Ref Expression
1 funcnvmpt.0 xφ
2 funcnvmpt.1 _xA
3 funcnvmpt.2 _xF
4 funcnvmpt.3 F=xAB
5 funcnvmpt.4 φxABV
6 relcnv RelF-1
7 nfcv _yF-1
8 3 nfcnv _xF-1
9 7 8 dffun6f FunF-1RelF-1y*xyF-1x
10 6 9 mpbiran FunF-1y*xyF-1x
11 vex yV
12 vex xV
13 11 12 brcnv yF-1xxFy
14 13 mobii *xyF-1x*xxFy
15 14 albii y*xyF-1xy*xxFy
16 10 15 bitri FunF-1y*xxFy
17 4 funmpt2 FunF
18 funbrfv2b FunFxFyxdomFFx=y
19 17 18 ax-mp xFyxdomFFx=y
20 4 dmmpt domF=xA|BV
21 5 elexd φxABV
22 21 ex φxABV
23 1 22 ralrimi φxABV
24 2 rabid2f A=xA|BVxABV
25 23 24 sylibr φA=xA|BV
26 20 25 eqtr4id φdomF=A
27 26 eleq2d φxdomFxA
28 27 anbi1d φxdomFFx=yxAFx=y
29 19 28 bitrid φxFyxAFx=y
30 29 bian1d φxAxFyxAFx=y
31 simpr φxAxA
32 4 fveq1i Fx=xABx
33 2 fvmpt2f xABVxABx=B
34 32 33 eqtrid xABVFx=B
35 31 5 34 syl2anc φxAFx=B
36 35 eqeq2d φxAy=Fxy=B
37 eqcom Fx=yy=Fx
38 27 biimpar φxAxdomF
39 funbrfvb FunFxdomFFx=yxFy
40 17 38 39 sylancr φxAFx=yxFy
41 37 40 bitr3id φxAy=FxxFy
42 36 41 bitr3d φxAy=BxFy
43 42 pm5.32da φxAy=BxAxFy
44 30 43 29 3bitr4rd φxFyxAy=B
45 1 44 mobid φ*xxFy*xxAy=B
46 df-rmo *xAy=B*xxAy=B
47 45 46 bitr4di φ*xxFy*xAy=B
48 47 albidv φy*xxFyy*xAy=B
49 16 48 bitrid φFunF-1y*xAy=B