| Step |
Hyp |
Ref |
Expression |
| 1 |
|
functhinc.b |
|
| 2 |
|
functhinc.c |
|
| 3 |
|
functhinc.h |
|
| 4 |
|
functhinc.j |
|
| 5 |
|
functhinc.d |
|
| 6 |
|
functhinc.e |
|
| 7 |
|
functhinc.f |
|
| 8 |
|
functhinc.k |
|
| 9 |
|
functhinc.1 |
|
| 10 |
|
functhinclem4.1 |
|
| 11 |
|
functhinclem4.i |
|
| 12 |
|
functhinclem4.x |
|
| 13 |
|
functhinclem4.o |
|
| 14 |
6
|
ad2antrr |
|
| 15 |
7
|
adantr |
|
| 16 |
15
|
ffvelcdmda |
|
| 17 |
|
simpr |
|
| 18 |
5
|
ad2antrr |
|
| 19 |
1 3 10 18 17
|
catidcl |
|
| 20 |
|
simplr |
|
| 21 |
|
oveq1 |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
21 23
|
xpeq12d |
|
| 25 |
|
oveq2 |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
25 27
|
xpeq12d |
|
| 29 |
24 28
|
cbvmpov |
|
| 30 |
8 29
|
eqtri |
|
| 31 |
20 30
|
eqtrdi |
|
| 32 |
9
|
ad2antrr |
|
| 33 |
17 17 32
|
functhinclem2 |
|
| 34 |
14 16 16 2 4
|
thincmo |
|
| 35 |
17 17 19 31 33 34
|
functhinclem3 |
|
| 36 |
14 2 4 16 11 35
|
thincid |
|
| 37 |
16
|
ad2antrr |
|
| 38 |
7
|
ad4antr |
|
| 39 |
|
simplrr |
|
| 40 |
38 39
|
ffvelcdmd |
|
| 41 |
17
|
ad2antrr |
|
| 42 |
5
|
ad4antr |
|
| 43 |
|
simplrl |
|
| 44 |
|
simprl |
|
| 45 |
|
simprr |
|
| 46 |
1 3 12 42 41 43 39 44 45
|
catcocl |
|
| 47 |
31
|
ad2antrr |
|
| 48 |
9
|
ad4antr |
|
| 49 |
41 39 48
|
functhinclem2 |
|
| 50 |
6
|
ad4antr |
|
| 51 |
50 37 40 2 4
|
thincmo |
|
| 52 |
41 39 46 47 49 51
|
functhinclem3 |
|
| 53 |
14
|
thinccd |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
38 43
|
ffvelcdmd |
|
| 56 |
41 43 48
|
functhinclem2 |
|
| 57 |
50 37 55 2 4
|
thincmo |
|
| 58 |
41 43 44 47 56 57
|
functhinclem3 |
|
| 59 |
43 39 48
|
functhinclem2 |
|
| 60 |
50 55 40 2 4
|
thincmo |
|
| 61 |
43 39 45 47 59 60
|
functhinclem3 |
|
| 62 |
2 4 13 54 37 55 40 58 61
|
catcocl |
|
| 63 |
37 40 52 62 2 4 50
|
thincmo2 |
|
| 64 |
63
|
ralrimivva |
|
| 65 |
64
|
ralrimivva |
|
| 66 |
36 65
|
jca |
|
| 67 |
66
|
ralrimiva |
|