Metamath Proof Explorer


Theorem functhinclem4

Description: Lemma for functhinc . Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinc.b B=BaseD
functhinc.c C=BaseE
functhinc.h H=HomD
functhinc.j J=HomE
functhinc.d φDCat
functhinc.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinc.f φF:BC
functhinc.k K=xB,yBxHy×FxJFy
functhinc.1 φzBwBFzJFw=zHw=
functhinclem4.1 1˙=IdD
functhinclem4.i I=IdE
functhinclem4.x ·˙=compD
functhinclem4.o O=compE
Assertion functhinclem4 φG=KaBaGa1˙a=IFabBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm

Proof

Step Hyp Ref Expression
1 functhinc.b B=BaseD
2 functhinc.c C=BaseE
3 functhinc.h H=HomD
4 functhinc.j J=HomE
5 functhinc.d φDCat
6 functhinc.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
7 functhinc.f φF:BC
8 functhinc.k K=xB,yBxHy×FxJFy
9 functhinc.1 φzBwBFzJFw=zHw=
10 functhinclem4.1 1˙=IdD
11 functhinclem4.i I=IdE
12 functhinclem4.x ·˙=compD
13 functhinclem4.o O=compE
14 6 ad2antrr Could not format ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) with typecode |-
15 7 adantr φG=KF:BC
16 15 ffvelcdmda φG=KaBFaC
17 simpr φG=KaBaB
18 5 ad2antrr φG=KaBDCat
19 1 3 10 18 17 catidcl φG=KaB1˙aaHa
20 simplr φG=KaBG=K
21 oveq1 x=vxHy=vHy
22 fveq2 x=vFx=Fv
23 22 oveq1d x=vFxJFy=FvJFy
24 21 23 xpeq12d x=vxHy×FxJFy=vHy×FvJFy
25 oveq2 y=uvHy=vHu
26 fveq2 y=uFy=Fu
27 26 oveq2d y=uFvJFy=FvJFu
28 25 27 xpeq12d y=uvHy×FvJFy=vHu×FvJFu
29 24 28 cbvmpov xB,yBxHy×FxJFy=vB,uBvHu×FvJFu
30 8 29 eqtri K=vB,uBvHu×FvJFu
31 20 30 eqtrdi φG=KaBG=vB,uBvHu×FvJFu
32 9 ad2antrr φG=KaBzBwBFzJFw=zHw=
33 17 17 32 functhinclem2 φG=KaBFaJFa=aHa=
34 14 16 16 2 4 thincmo φG=KaB*ppFaJFa
35 17 17 19 31 33 34 functhinclem3 φG=KaBaGa1˙aFaJFa
36 14 2 4 16 11 35 thincid φG=KaBaGa1˙a=IFa
37 16 ad2antrr φG=KaBbBcBmaHbnbHcFaC
38 7 ad4antr φG=KaBbBcBmaHbnbHcF:BC
39 simplrr φG=KaBbBcBmaHbnbHccB
40 38 39 ffvelcdmd φG=KaBbBcBmaHbnbHcFcC
41 17 ad2antrr φG=KaBbBcBmaHbnbHcaB
42 5 ad4antr φG=KaBbBcBmaHbnbHcDCat
43 simplrl φG=KaBbBcBmaHbnbHcbB
44 simprl φG=KaBbBcBmaHbnbHcmaHb
45 simprr φG=KaBbBcBmaHbnbHcnbHc
46 1 3 12 42 41 43 39 44 45 catcocl φG=KaBbBcBmaHbnbHcnab·˙cmaHc
47 31 ad2antrr φG=KaBbBcBmaHbnbHcG=vB,uBvHu×FvJFu
48 9 ad4antr φG=KaBbBcBmaHbnbHczBwBFzJFw=zHw=
49 41 39 48 functhinclem2 φG=KaBbBcBmaHbnbHcFaJFc=aHc=
50 6 ad4antr Could not format ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) with typecode |-
51 50 37 40 2 4 thincmo φG=KaBbBcBmaHbnbHc*ppFaJFc
52 41 39 46 47 49 51 functhinclem3 φG=KaBbBcBmaHbnbHcaGcnab·˙cmFaJFc
53 14 thinccd φG=KaBECat
54 53 ad2antrr φG=KaBbBcBmaHbnbHcECat
55 38 43 ffvelcdmd φG=KaBbBcBmaHbnbHcFbC
56 41 43 48 functhinclem2 φG=KaBbBcBmaHbnbHcFaJFb=aHb=
57 50 37 55 2 4 thincmo φG=KaBbBcBmaHbnbHc*ppFaJFb
58 41 43 44 47 56 57 functhinclem3 φG=KaBbBcBmaHbnbHcaGbmFaJFb
59 43 39 48 functhinclem2 φG=KaBbBcBmaHbnbHcFbJFc=bHc=
60 50 55 40 2 4 thincmo φG=KaBbBcBmaHbnbHc*ppFbJFc
61 43 39 45 47 59 60 functhinclem3 φG=KaBbBcBmaHbnbHcbGcnFbJFc
62 2 4 13 54 37 55 40 58 61 catcocl φG=KaBbBcBmaHbnbHcbGcnFaFbOFcaGbmFaJFc
63 37 40 52 62 2 4 50 thincmo2 φG=KaBbBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm
64 63 ralrimivva φG=KaBbBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm
65 64 ralrimivva φG=KaBbBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm
66 36 65 jca φG=KaBaGa1˙a=IFabBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm
67 66 ralrimiva φG=KaBaGa1˙a=IFabBcBmaHbnbHcaGcnab·˙cm=bGcnFaFbOFcaGbm