Metamath Proof Explorer


Theorem fv3

Description: Alternate definition of the value of a function. Definition 6.11 of TakeutiZaring p. 26. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fv3 FA=x|yxyAFy∃!yAFy

Proof

Step Hyp Ref Expression
1 elfv xFAzxzyAFyy=z
2 biimpr AFyy=zy=zAFy
3 2 alimi yAFyy=zyy=zAFy
4 breq2 y=zAFyAFz
5 4 equsalvw yy=zAFyAFz
6 3 5 sylib yAFyy=zAFz
7 6 anim2i xzyAFyy=zxzAFz
8 7 eximi zxzyAFyy=zzxzAFz
9 elequ2 z=yxzxy
10 breq2 z=yAFzAFy
11 9 10 anbi12d z=yxzAFzxyAFy
12 11 cbvexvw zxzAFzyxyAFy
13 8 12 sylib zxzyAFyy=zyxyAFy
14 exsimpr zxzyAFyy=zzyAFyy=z
15 eu6 ∃!yAFyzyAFyy=z
16 14 15 sylibr zxzyAFyy=z∃!yAFy
17 13 16 jca zxzyAFyy=zyxyAFy∃!yAFy
18 nfeu1 y∃!yAFy
19 nfv yxz
20 nfa1 yyAFyy=z
21 19 20 nfan yxzyAFyy=z
22 21 nfex yzxzyAFyy=z
23 18 22 nfim y∃!yAFyzxzyAFyy=z
24 biimp AFyy=zAFyy=z
25 ax9 y=zxyxz
26 24 25 syl6 AFyy=zAFyxyxz
27 26 impcomd AFyy=zxyAFyxz
28 27 sps yAFyy=zxyAFyxz
29 28 anc2ri yAFyy=zxyAFyxzyAFyy=z
30 29 com12 xyAFyyAFyy=zxzyAFyy=z
31 30 eximdv xyAFyzyAFyy=zzxzyAFyy=z
32 15 31 biimtrid xyAFy∃!yAFyzxzyAFyy=z
33 23 32 exlimi yxyAFy∃!yAFyzxzyAFyy=z
34 33 imp yxyAFy∃!yAFyzxzyAFyy=z
35 17 34 impbii zxzyAFyy=zyxyAFy∃!yAFy
36 1 35 bitri xFAyxyAFy∃!yAFy
37 36 eqabi FA=x|yxyAFy∃!yAFy