Metamath Proof Explorer


Theorem fzunt1d

Description: Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024)

Ref Expression
Hypotheses fzunt1d.k φK
fzunt1d.l φL
fzunt1d.m φM
fzunt1d.n φN
fzunt1d.km φKM
fzunt1d.ml φML
fzunt1d.ln φLN
Assertion fzunt1d φKLMN=KN

Proof

Step Hyp Ref Expression
1 fzunt1d.k φK
2 fzunt1d.l φL
3 fzunt1d.m φM
4 fzunt1d.n φN
5 fzunt1d.km φKM
6 fzunt1d.ml φML
7 fzunt1d.ln φLN
8 zre jj
9 simplr φjjLj
10 2 ad2antrr φjjLL
11 10 zred φjjLL
12 4 ad2antrr φjjLN
13 12 zred φjjLN
14 simpr φjjLjL
15 7 ad2antrr φjjLLN
16 9 11 13 14 15 letrd φjjLjN
17 16 ex φjjLjN
18 17 anim2d φjKjjLKjjN
19 1 ad2antrr φjMjK
20 19 zred φjMjK
21 3 ad2antrr φjMjM
22 21 zred φjMjM
23 simplr φjMjj
24 5 ad2antrr φjMjKM
25 simpr φjMjMj
26 20 22 23 24 25 letrd φjMjKj
27 26 ex φjMjKj
28 27 anim1d φjMjjNKjjN
29 18 28 jaod φjKjjLMjjNKjjN
30 orc KjKjMj
31 orc KjKjjN
32 30 31 jca KjKjMjKjjN
33 32 ad2antrl φjKjjNKjMjKjjN
34 simpr φjj
35 2 adantr φjL
36 35 zred φjL
37 14 orcd φjjLjLMj
38 3 ad2antrr φjLjM
39 38 zred φjLjM
40 2 ad2antrr φjLjL
41 40 zred φjLjL
42 simplr φjLjj
43 6 ad2antrr φjLjML
44 simpr φjLjLj
45 39 41 42 43 44 letrd φjLjMj
46 45 olcd φjLjjLMj
47 34 36 37 46 lecasei φjjLMj
48 47 adantr φjKjjNjLMj
49 simprr φjKjjNjN
50 49 olcd φjKjjNjLjN
51 48 50 jca φjKjjNjLMjjLjN
52 orddi KjjLMjjNKjMjKjjNjLMjjLjN
53 33 51 52 sylanbrc φjKjjNKjjLMjjN
54 53 ex φjKjjNKjjLMjjN
55 29 54 impbid φjKjjLMjjNKjjN
56 8 55 sylan2 φjKjjLMjjNKjjN
57 56 pm5.32da φjKjjLMjjNjKjjN
58 elfz1 KLjKLjKjjL
59 1 2 58 syl2anc φjKLjKjjL
60 3anass jKjjLjKjjL
61 59 60 bitrdi φjKLjKjjL
62 elfz1 MNjMNjMjjN
63 3 4 62 syl2anc φjMNjMjjN
64 3anass jMjjNjMjjN
65 63 64 bitrdi φjMNjMjjN
66 61 65 orbi12d φjKLjMNjKjjLjMjjN
67 elun jKLMNjKLjMN
68 andi jKjjLMjjNjKjjLjMjjN
69 66 67 68 3bitr4g φjKLMNjKjjLMjjN
70 elfz1 KNjKNjKjjN
71 1 4 70 syl2anc φjKNjKjjN
72 3anass jKjjNjKjjN
73 71 72 bitrdi φjKNjKjjN
74 57 69 73 3bitr4d φjKLMNjKN
75 74 eqrdv φKLMN=KN