Description: Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fzunt1d.k | |
|
fzunt1d.l | |
||
fzunt1d.m | |
||
fzunt1d.n | |
||
fzunt1d.km | |
||
fzunt1d.ml | |
||
fzunt1d.ln | |
||
Assertion | fzunt1d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzunt1d.k | |
|
2 | fzunt1d.l | |
|
3 | fzunt1d.m | |
|
4 | fzunt1d.n | |
|
5 | fzunt1d.km | |
|
6 | fzunt1d.ml | |
|
7 | fzunt1d.ln | |
|
8 | zre | |
|
9 | simplr | |
|
10 | 2 | ad2antrr | |
11 | 10 | zred | |
12 | 4 | ad2antrr | |
13 | 12 | zred | |
14 | simpr | |
|
15 | 7 | ad2antrr | |
16 | 9 11 13 14 15 | letrd | |
17 | 16 | ex | |
18 | 17 | anim2d | |
19 | 1 | ad2antrr | |
20 | 19 | zred | |
21 | 3 | ad2antrr | |
22 | 21 | zred | |
23 | simplr | |
|
24 | 5 | ad2antrr | |
25 | simpr | |
|
26 | 20 22 23 24 25 | letrd | |
27 | 26 | ex | |
28 | 27 | anim1d | |
29 | 18 28 | jaod | |
30 | orc | |
|
31 | orc | |
|
32 | 30 31 | jca | |
33 | 32 | ad2antrl | |
34 | simpr | |
|
35 | 2 | adantr | |
36 | 35 | zred | |
37 | 14 | orcd | |
38 | 3 | ad2antrr | |
39 | 38 | zred | |
40 | 2 | ad2antrr | |
41 | 40 | zred | |
42 | simplr | |
|
43 | 6 | ad2antrr | |
44 | simpr | |
|
45 | 39 41 42 43 44 | letrd | |
46 | 45 | olcd | |
47 | 34 36 37 46 | lecasei | |
48 | 47 | adantr | |
49 | simprr | |
|
50 | 49 | olcd | |
51 | 48 50 | jca | |
52 | orddi | |
|
53 | 33 51 52 | sylanbrc | |
54 | 53 | ex | |
55 | 29 54 | impbid | |
56 | 8 55 | sylan2 | |
57 | 56 | pm5.32da | |
58 | elfz1 | |
|
59 | 1 2 58 | syl2anc | |
60 | 3anass | |
|
61 | 59 60 | bitrdi | |
62 | elfz1 | |
|
63 | 3 4 62 | syl2anc | |
64 | 3anass | |
|
65 | 63 64 | bitrdi | |
66 | 61 65 | orbi12d | |
67 | elun | |
|
68 | andi | |
|
69 | 66 67 68 | 3bitr4g | |
70 | elfz1 | |
|
71 | 1 4 70 | syl2anc | |
72 | 3anass | |
|
73 | 71 72 | bitrdi | |
74 | 57 69 73 | 3bitr4d | |
75 | 74 | eqrdv | |