Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gaid.1 | |
|
Assertion | gaid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gaid.1 | |
|
2 | elex | |
|
3 | 2 | anim2i | |
4 | eqid | |
|
5 | 1 4 | grpidcl | |
6 | 5 | adantr | |
7 | ovres | |
|
8 | df-ov | |
|
9 | fvex | |
|
10 | vex | |
|
11 | 9 10 | op2nd | |
12 | 8 11 | eqtri | |
13 | 7 12 | eqtrdi | |
14 | 6 13 | sylan | |
15 | simprl | |
|
16 | simplr | |
|
17 | ovres | |
|
18 | df-ov | |
|
19 | vex | |
|
20 | 19 10 | op2nd | |
21 | 18 20 | eqtri | |
22 | 17 21 | eqtrdi | |
23 | 15 16 22 | syl2anc | |
24 | simprr | |
|
25 | ovres | |
|
26 | df-ov | |
|
27 | vex | |
|
28 | 27 10 | op2nd | |
29 | 26 28 | eqtri | |
30 | 25 29 | eqtrdi | |
31 | 24 16 30 | syl2anc | |
32 | 31 | oveq2d | |
33 | eqid | |
|
34 | 1 33 | grpcl | |
35 | 34 | 3expb | |
36 | 35 | ad4ant14 | |
37 | ovres | |
|
38 | df-ov | |
|
39 | ovex | |
|
40 | 39 10 | op2nd | |
41 | 38 40 | eqtri | |
42 | 37 41 | eqtrdi | |
43 | 36 16 42 | syl2anc | |
44 | 23 32 43 | 3eqtr4rd | |
45 | 44 | ralrimivva | |
46 | 14 45 | jca | |
47 | 46 | ralrimiva | |
48 | f2ndres | |
|
49 | 47 48 | jctil | |
50 | 1 33 4 | isga | |
51 | 3 49 50 | sylanbrc | |