Metamath Proof Explorer


Theorem gaid

Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis gaid.1 X=BaseG
Assertion gaid GGrpSV2ndX×SGGrpActS

Proof

Step Hyp Ref Expression
1 gaid.1 X=BaseG
2 elex SVSV
3 2 anim2i GGrpSVGGrpSV
4 eqid 0G=0G
5 1 4 grpidcl GGrp0GX
6 5 adantr GGrpSV0GX
7 ovres 0GXxS0G2ndX×Sx=0G2ndx
8 df-ov 0G2ndx=2nd0Gx
9 fvex 0GV
10 vex xV
11 9 10 op2nd 2nd0Gx=x
12 8 11 eqtri 0G2ndx=x
13 7 12 eqtrdi 0GXxS0G2ndX×Sx=x
14 6 13 sylan GGrpSVxS0G2ndX×Sx=x
15 simprl GGrpSVxSyXzXyX
16 simplr GGrpSVxSyXzXxS
17 ovres yXxSy2ndX×Sx=y2ndx
18 df-ov y2ndx=2ndyx
19 vex yV
20 19 10 op2nd 2ndyx=x
21 18 20 eqtri y2ndx=x
22 17 21 eqtrdi yXxSy2ndX×Sx=x
23 15 16 22 syl2anc GGrpSVxSyXzXy2ndX×Sx=x
24 simprr GGrpSVxSyXzXzX
25 ovres zXxSz2ndX×Sx=z2ndx
26 df-ov z2ndx=2ndzx
27 vex zV
28 27 10 op2nd 2ndzx=x
29 26 28 eqtri z2ndx=x
30 25 29 eqtrdi zXxSz2ndX×Sx=x
31 24 16 30 syl2anc GGrpSVxSyXzXz2ndX×Sx=x
32 31 oveq2d GGrpSVxSyXzXy2ndX×Sz2ndX×Sx=y2ndX×Sx
33 eqid +G=+G
34 1 33 grpcl GGrpyXzXy+GzX
35 34 3expb GGrpyXzXy+GzX
36 35 ad4ant14 GGrpSVxSyXzXy+GzX
37 ovres y+GzXxSy+Gz2ndX×Sx=y+Gz2ndx
38 df-ov y+Gz2ndx=2ndy+Gzx
39 ovex y+GzV
40 39 10 op2nd 2ndy+Gzx=x
41 38 40 eqtri y+Gz2ndx=x
42 37 41 eqtrdi y+GzXxSy+Gz2ndX×Sx=x
43 36 16 42 syl2anc GGrpSVxSyXzXy+Gz2ndX×Sx=x
44 23 32 43 3eqtr4rd GGrpSVxSyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
45 44 ralrimivva GGrpSVxSyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
46 14 45 jca GGrpSVxS0G2ndX×Sx=xyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
47 46 ralrimiva GGrpSVxS0G2ndX×Sx=xyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
48 f2ndres 2ndX×S:X×SS
49 47 48 jctil GGrpSV2ndX×S:X×SSxS0G2ndX×Sx=xyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
50 1 33 4 isga 2ndX×SGGrpActSGGrpSV2ndX×S:X×SSxS0G2ndX×Sx=xyXzXy+Gz2ndX×Sx=y2ndX×Sz2ndX×Sx
51 3 49 50 sylanbrc GGrpSV2ndX×SGGrpActS