| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|
| 2 |
1
|
3ad2ant3 |
|
| 3 |
|
simp1 |
|
| 4 |
|
divides |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
simp2 |
|
| 7 |
|
divides |
|
| 8 |
2 6 7
|
syl2anc |
|
| 9 |
5 8
|
anbi12d |
|
| 10 |
|
reeanv |
|
| 11 |
9 10
|
bitr4di |
|
| 12 |
|
gcdcl |
|
| 13 |
12
|
nn0cnd |
|
| 14 |
13
|
3adant3 |
|
| 15 |
|
nncn |
|
| 16 |
15
|
3ad2ant3 |
|
| 17 |
|
nnne0 |
|
| 18 |
17
|
3ad2ant3 |
|
| 19 |
14 16 18
|
divcan4d |
|
| 20 |
|
nnnn0 |
|
| 21 |
|
mulgcdr |
|
| 22 |
20 21
|
syl3an3 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
zcn |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
25 16 18
|
divcan4d |
|
| 27 |
|
zcn |
|
| 28 |
27
|
3ad2ant2 |
|
| 29 |
28 16 18
|
divcan4d |
|
| 30 |
26 29
|
oveq12d |
|
| 31 |
19 23 30
|
3eqtr4d |
|
| 32 |
|
oveq12 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
|
oveq1 |
|
| 35 |
|
oveq1 |
|
| 36 |
34 35
|
oveqan12d |
|
| 37 |
33 36
|
eqeq12d |
|
| 38 |
31 37
|
syl5ibcom |
|
| 39 |
38
|
3expa |
|
| 40 |
39
|
expcom |
|
| 41 |
40
|
rexlimdvv |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
11 42
|
sylbid |
|
| 44 |
43
|
imp |
|