Metamath Proof Explorer


Theorem gcdneg

Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion gcdneg MNMgcd- N=MgcdN

Proof

Step Hyp Ref Expression
1 oveq12 M=0N=0MgcdN=0gcd0
2 1 adantl MNM=0N=0MgcdN=0gcd0
3 zcn NN
4 3 negeq0d NN=0N=0
5 4 anbi2d NM=0N=0M=0N=0
6 5 adantl MNM=0N=0M=0N=0
7 oveq12 M=0N=0Mgcd- N=0gcd0
8 6 7 syl6bi MNM=0N=0Mgcd- N=0gcd0
9 8 imp MNM=0N=0Mgcd- N=0gcd0
10 2 9 eqtr4d MNM=0N=0MgcdN=Mgcd- N
11 gcddvds MNMgcdNMMgcdNN
12 gcdcl MNMgcdN0
13 12 nn0zd MNMgcdN
14 dvdsnegb MgcdNNMgcdNNMgcdN- N
15 13 14 sylancom MNMgcdNNMgcdN- N
16 15 anbi2d MNMgcdNMMgcdNNMgcdNMMgcdN- N
17 11 16 mpbid MNMgcdNMMgcdN- N
18 6 notbid MN¬M=0N=0¬M=0N=0
19 simpl MNM
20 znegcl NN
21 20 adantl MNN
22 dvdslegcd MgcdNMN¬M=0N=0MgcdNMMgcdN- NMgcdNMgcd- N
23 22 ex MgcdNMN¬M=0N=0MgcdNMMgcdN- NMgcdNMgcd- N
24 13 19 21 23 syl3anc MN¬M=0N=0MgcdNMMgcdN- NMgcdNMgcd- N
25 18 24 sylbid MN¬M=0N=0MgcdNMMgcdN- NMgcdNMgcd- N
26 25 com12 ¬M=0N=0MNMgcdNMMgcdN- NMgcdNMgcd- N
27 17 26 mpdi ¬M=0N=0MNMgcdNMgcd- N
28 27 impcom MN¬M=0N=0MgcdNMgcd- N
29 gcddvds MNMgcd- NMMgcd- N- N
30 20 29 sylan2 MNMgcd- NMMgcd- N- N
31 gcdcl MNMgcd- N0
32 31 nn0zd MNMgcd- N
33 20 32 sylan2 MNMgcd- N
34 dvdsnegb Mgcd- NNMgcd- NNMgcd- N- N
35 33 34 sylancom MNMgcd- NNMgcd- N- N
36 35 anbi2d MNMgcd- NMMgcd- NNMgcd- NMMgcd- N- N
37 30 36 mpbird MNMgcd- NMMgcd- NN
38 simpr MNN
39 dvdslegcd Mgcd- NMN¬M=0N=0Mgcd- NMMgcd- NNMgcd- NMgcdN
40 39 ex Mgcd- NMN¬M=0N=0Mgcd- NMMgcd- NNMgcd- NMgcdN
41 33 19 38 40 syl3anc MN¬M=0N=0Mgcd- NMMgcd- NNMgcd- NMgcdN
42 41 com12 ¬M=0N=0MNMgcd- NMMgcd- NNMgcd- NMgcdN
43 37 42 mpdi ¬M=0N=0MNMgcd- NMgcdN
44 43 impcom MN¬M=0N=0Mgcd- NMgcdN
45 13 zred MNMgcdN
46 33 zred MNMgcd- N
47 45 46 letri3d MNMgcdN=Mgcd- NMgcdNMgcd- NMgcd- NMgcdN
48 47 adantr MN¬M=0N=0MgcdN=Mgcd- NMgcdNMgcd- NMgcd- NMgcdN
49 28 44 48 mpbir2and MN¬M=0N=0MgcdN=Mgcd- N
50 10 49 pm2.61dan MNMgcdN=Mgcd- N
51 50 eqcomd MNMgcd- N=MgcdN