| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
idd |
|
| 3 |
|
idd |
|
| 4 |
|
pwfi |
|
| 5 |
|
isfinite |
|
| 6 |
|
winainf |
|
| 7 |
|
ssdomg |
|
| 8 |
6 7
|
mpd |
|
| 9 |
|
sdomdomtr |
|
| 10 |
9
|
expcom |
|
| 11 |
8 10
|
syl |
|
| 12 |
5 11
|
biimtrid |
|
| 13 |
4 12
|
biimtrid |
|
| 14 |
13
|
ad3antlr |
|
| 15 |
14
|
a1dd |
|
| 16 |
|
vex |
|
| 17 |
|
simplll |
|
| 18 |
16 17
|
eleqtrrid |
|
| 19 |
|
simprr |
|
| 20 |
|
gchinf |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
|
vex |
|
| 23 |
22 17
|
eleqtrrid |
|
| 24 |
|
gchpwdom |
|
| 25 |
21 18 23 24
|
syl3anc |
|
| 26 |
|
winacard |
|
| 27 |
|
iscard |
|
| 28 |
27
|
simprbi |
|
| 29 |
26 28
|
syl |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
30
|
r19.21bi |
|
| 32 |
|
domsdomtr |
|
| 33 |
32
|
expcom |
|
| 34 |
31 33
|
syl |
|
| 35 |
34
|
adantrr |
|
| 36 |
25 35
|
sylbid |
|
| 37 |
36
|
expr |
|
| 38 |
15 37
|
pm2.61d |
|
| 39 |
38
|
rexlimdva |
|
| 40 |
39
|
ralimdva |
|
| 41 |
2 3 40
|
3anim123d |
|
| 42 |
|
elwina |
|
| 43 |
|
elina |
|
| 44 |
41 42 43
|
3imtr4g |
|
| 45 |
1 44
|
mpd |
|
| 46 |
45
|
ex |
|
| 47 |
|
inawina |
|
| 48 |
46 47
|
impbid1 |
|
| 49 |
48
|
eqrdv |
|