Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 5-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gchina | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | idd | |
|
3 | idd | |
|
4 | pwfi | |
|
5 | isfinite | |
|
6 | winainf | |
|
7 | ssdomg | |
|
8 | 6 7 | mpd | |
9 | sdomdomtr | |
|
10 | 9 | expcom | |
11 | 8 10 | syl | |
12 | 5 11 | biimtrid | |
13 | 4 12 | biimtrid | |
14 | 13 | ad3antlr | |
15 | 14 | a1dd | |
16 | vex | |
|
17 | simplll | |
|
18 | 16 17 | eleqtrrid | |
19 | simprr | |
|
20 | gchinf | |
|
21 | 18 19 20 | syl2anc | |
22 | vex | |
|
23 | 22 17 | eleqtrrid | |
24 | gchpwdom | |
|
25 | 21 18 23 24 | syl3anc | |
26 | winacard | |
|
27 | iscard | |
|
28 | 27 | simprbi | |
29 | 26 28 | syl | |
30 | 29 | ad2antlr | |
31 | 30 | r19.21bi | |
32 | domsdomtr | |
|
33 | 32 | expcom | |
34 | 31 33 | syl | |
35 | 34 | adantrr | |
36 | 25 35 | sylbid | |
37 | 36 | expr | |
38 | 15 37 | pm2.61d | |
39 | 38 | rexlimdva | |
40 | 39 | ralimdva | |
41 | 2 3 40 | 3anim123d | |
42 | elwina | |
|
43 | elina | |
|
44 | 41 42 43 | 3imtr4g | |
45 | 1 44 | mpd | |
46 | 45 | ex | |
47 | inawina | |
|
48 | 46 47 | impbid1 | |
49 | 48 | eqrdv | |