Metamath Proof Explorer


Theorem gchina

Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion gchina GCH=VInacc𝑤=Inacc

Proof

Step Hyp Ref Expression
1 simpr GCH=VxInacc𝑤xInacc𝑤
2 idd GCH=VxInacc𝑤xx
3 idd GCH=VxInacc𝑤cfx=xcfx=x
4 pwfi yFin𝒫yFin
5 isfinite 𝒫yFin𝒫yω
6 winainf xInacc𝑤ωx
7 ssdomg xInacc𝑤ωxωx
8 6 7 mpd xInacc𝑤ωx
9 sdomdomtr 𝒫yωωx𝒫yx
10 9 expcom ωx𝒫yω𝒫yx
11 8 10 syl xInacc𝑤𝒫yω𝒫yx
12 5 11 biimtrid xInacc𝑤𝒫yFin𝒫yx
13 4 12 biimtrid xInacc𝑤yFin𝒫yx
14 13 ad3antlr GCH=VxInacc𝑤yxzxyFin𝒫yx
15 14 a1dd GCH=VxInacc𝑤yxzxyFinyz𝒫yx
16 vex yV
17 simplll GCH=VxInacc𝑤yxzx¬yFinGCH=V
18 16 17 eleqtrrid GCH=VxInacc𝑤yxzx¬yFinyGCH
19 simprr GCH=VxInacc𝑤yxzx¬yFin¬yFin
20 gchinf yGCH¬yFinωy
21 18 19 20 syl2anc GCH=VxInacc𝑤yxzx¬yFinωy
22 vex zV
23 22 17 eleqtrrid GCH=VxInacc𝑤yxzx¬yFinzGCH
24 gchpwdom ωyyGCHzGCHyz𝒫yz
25 21 18 23 24 syl3anc GCH=VxInacc𝑤yxzx¬yFinyz𝒫yz
26 winacard xInacc𝑤cardx=x
27 iscard cardx=xxOnzxzx
28 27 simprbi cardx=xzxzx
29 26 28 syl xInacc𝑤zxzx
30 29 ad2antlr GCH=VxInacc𝑤yxzxzx
31 30 r19.21bi GCH=VxInacc𝑤yxzxzx
32 domsdomtr 𝒫yzzx𝒫yx
33 32 expcom zx𝒫yz𝒫yx
34 31 33 syl GCH=VxInacc𝑤yxzx𝒫yz𝒫yx
35 34 adantrr GCH=VxInacc𝑤yxzx¬yFin𝒫yz𝒫yx
36 25 35 sylbid GCH=VxInacc𝑤yxzx¬yFinyz𝒫yx
37 36 expr GCH=VxInacc𝑤yxzx¬yFinyz𝒫yx
38 15 37 pm2.61d GCH=VxInacc𝑤yxzxyz𝒫yx
39 38 rexlimdva GCH=VxInacc𝑤yxzxyz𝒫yx
40 39 ralimdva GCH=VxInacc𝑤yxzxyzyx𝒫yx
41 2 3 40 3anim123d GCH=VxInacc𝑤xcfx=xyxzxyzxcfx=xyx𝒫yx
42 elwina xInacc𝑤xcfx=xyxzxyz
43 elina xInaccxcfx=xyx𝒫yx
44 41 42 43 3imtr4g GCH=VxInacc𝑤xInacc𝑤xInacc
45 1 44 mpd GCH=VxInacc𝑤xInacc
46 45 ex GCH=VxInacc𝑤xInacc
47 inawina xInaccxInacc𝑤
48 46 47 impbid1 GCH=VxInacc𝑤xInacc
49 48 eqrdv GCH=VInacc𝑤=Inacc