Metamath Proof Explorer


Theorem genpv

Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpv A𝑷B𝑷AFB=f|gAhBf=gGh

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 oveq1 f=AfFg=AFg
4 rexeq f=Ayfzgx=yGzyAzgx=yGz
5 4 abbidv f=Ax|yfzgx=yGz=x|yAzgx=yGz
6 3 5 eqeq12d f=AfFg=x|yfzgx=yGzAFg=x|yAzgx=yGz
7 oveq2 g=BAFg=AFB
8 rexeq g=Bzgx=yGzzBx=yGz
9 8 rexbidv g=ByAzgx=yGzyAzBx=yGz
10 9 abbidv g=Bx|yAzgx=yGz=x|yAzBx=yGz
11 7 10 eqeq12d g=BAFg=x|yAzgx=yGzAFB=x|yAzBx=yGz
12 elprnq f𝑷yfy𝑸
13 elprnq g𝑷zgz𝑸
14 eleq1 x=yGzx𝑸yGz𝑸
15 2 14 syl5ibrcom y𝑸z𝑸x=yGzx𝑸
16 12 13 15 syl2an f𝑷yfg𝑷zgx=yGzx𝑸
17 16 an4s f𝑷g𝑷yfzgx=yGzx𝑸
18 17 rexlimdvva f𝑷g𝑷yfzgx=yGzx𝑸
19 18 abssdv f𝑷g𝑷x|yfzgx=yGz𝑸
20 nqex 𝑸V
21 ssexg x|yfzgx=yGz𝑸𝑸Vx|yfzgx=yGzV
22 19 20 21 sylancl f𝑷g𝑷x|yfzgx=yGzV
23 rexeq w=fywzvx=yGzyfzvx=yGz
24 23 abbidv w=fx|ywzvx=yGz=x|yfzvx=yGz
25 rexeq v=gzvx=yGzzgx=yGz
26 25 rexbidv v=gyfzvx=yGzyfzgx=yGz
27 26 abbidv v=gx|yfzvx=yGz=x|yfzgx=yGz
28 24 27 1 ovmpog f𝑷g𝑷x|yfzgx=yGzVfFg=x|yfzgx=yGz
29 22 28 mpd3an3 f𝑷g𝑷fFg=x|yfzgx=yGz
30 6 11 29 vtocl2ga A𝑷B𝑷AFB=x|yAzBx=yGz
31 eqeq1 x=fx=yGzf=yGz
32 31 2rexbidv x=fyAzBx=yGzyAzBf=yGz
33 oveq1 y=gyGz=gGz
34 33 eqeq2d y=gf=yGzf=gGz
35 oveq2 z=hgGz=gGh
36 35 eqeq2d z=hf=gGzf=gGh
37 34 36 cbvrex2vw yAzBf=yGzgAhBf=gGh
38 32 37 bitrdi x=fyAzBx=yGzgAhBf=gGh
39 38 cbvabv x|yAzBx=yGz=f|gAhBf=gGh
40 30 39 eqtrdi A𝑷B𝑷AFB=f|gAhBf=gGh