| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
simp2 |
|
| 3 |
|
ax-1cn |
|
| 4 |
|
subcl |
|
| 5 |
3 2 4
|
sylancr |
|
| 6 |
|
simp3 |
|
| 7 |
|
1re |
|
| 8 |
7
|
ltnri |
|
| 9 |
|
abs1 |
|
| 10 |
|
fveq2 |
|
| 11 |
9 10
|
eqtr3id |
|
| 12 |
11
|
breq1d |
|
| 13 |
8 12
|
mtbii |
|
| 14 |
13
|
necon2ai |
|
| 15 |
6 14
|
syl |
|
| 16 |
|
subeq0 |
|
| 17 |
16
|
necon3bid |
|
| 18 |
3 2 17
|
sylancr |
|
| 19 |
15 18
|
mpbird |
|
| 20 |
1 2 5 19
|
divassd |
|
| 21 |
|
geoisum1 |
|
| 22 |
21
|
3adant1 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
nnuz |
|
| 25 |
|
1zzd |
|
| 26 |
|
oveq2 |
|
| 27 |
|
eqid |
|
| 28 |
|
ovex |
|
| 29 |
26 27 28
|
fvmpt |
|
| 30 |
29
|
adantl |
|
| 31 |
|
nnnn0 |
|
| 32 |
|
expcl |
|
| 33 |
2 31 32
|
syl2an |
|
| 34 |
|
1nn0 |
|
| 35 |
34
|
a1i |
|
| 36 |
|
elnnuz |
|
| 37 |
36 30
|
sylan2br |
|
| 38 |
2 6 35 37
|
geolim2 |
|
| 39 |
|
seqex |
|
| 40 |
|
ovex |
|
| 41 |
39 40
|
breldm |
|
| 42 |
38 41
|
syl |
|
| 43 |
24 25 30 33 42 1
|
isummulc2 |
|
| 44 |
20 23 43
|
3eqtr2rd |
|