Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Fermat numbers
goldbachthlem1
Next ⟩
goldbachthlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
goldbachthlem1
Description:
Lemma 1 for
goldbachth
.
(Contributed by
AV
, 1-Aug-2021)
Ref
Expression
Assertion
goldbachthlem1
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
FermatNo
⁡
M
∥
FermatNo
⁡
N
−
2
Proof
Step
Hyp
Ref
Expression
1
simp2
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
M
∈
ℕ
0
2
nn0z
⊢
M
∈
ℕ
0
→
M
∈
ℤ
3
nn0z
⊢
N
∈
ℕ
0
→
N
∈
ℤ
4
znnsub
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
↔
N
−
M
∈
ℕ
5
2
3
4
syl2anr
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
M
<
N
↔
N
−
M
∈
ℕ
6
5
biimp3a
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
N
−
M
∈
ℕ
7
fmtnodvds
⊢
M
∈
ℕ
0
∧
N
−
M
∈
ℕ
→
FermatNo
⁡
M
∥
FermatNo
⁡
M
+
N
-
M
−
2
8
1
6
7
syl2anc
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
FermatNo
⁡
M
∥
FermatNo
⁡
M
+
N
-
M
−
2
9
nn0cn
⊢
N
∈
ℕ
0
→
N
∈
ℂ
10
nn0cn
⊢
M
∈
ℕ
0
→
M
∈
ℂ
11
9
10
anim12ci
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
→
M
∈
ℂ
∧
N
∈
ℂ
12
11
3adant3
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
M
∈
ℂ
∧
N
∈
ℂ
13
pncan3
⊢
M
∈
ℂ
∧
N
∈
ℂ
→
M
+
N
-
M
=
N
14
12
13
syl
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
M
+
N
-
M
=
N
15
14
eqcomd
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
N
=
M
+
N
-
M
16
15
fveq2d
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
FermatNo
⁡
N
=
FermatNo
⁡
M
+
N
-
M
17
16
oveq1d
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
FermatNo
⁡
N
−
2
=
FermatNo
⁡
M
+
N
-
M
−
2
18
8
17
breqtrrd
⊢
N
∈
ℕ
0
∧
M
∈
ℕ
0
∧
M
<
N
→
FermatNo
⁡
M
∥
FermatNo
⁡
N
−
2