Metamath Proof Explorer


Theorem grpinvadd

Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006)

Ref Expression
Hypotheses grpinvadd.b B=BaseG
grpinvadd.p +˙=+G
grpinvadd.n N=invgG
Assertion grpinvadd GGrpXBYBNX+˙Y=NY+˙NX

Proof

Step Hyp Ref Expression
1 grpinvadd.b B=BaseG
2 grpinvadd.p +˙=+G
3 grpinvadd.n N=invgG
4 simp1 GGrpXBYBGGrp
5 simp2 GGrpXBYBXB
6 simp3 GGrpXBYBYB
7 1 3 grpinvcl GGrpYBNYB
8 7 3adant2 GGrpXBYBNYB
9 1 3 grpinvcl GGrpXBNXB
10 9 3adant3 GGrpXBYBNXB
11 1 2 grpcl GGrpNYBNXBNY+˙NXB
12 4 8 10 11 syl3anc GGrpXBYBNY+˙NXB
13 1 2 grpass GGrpXBYBNY+˙NXBX+˙Y+˙NY+˙NX=X+˙Y+˙NY+˙NX
14 4 5 6 12 13 syl13anc GGrpXBYBX+˙Y+˙NY+˙NX=X+˙Y+˙NY+˙NX
15 eqid 0G=0G
16 1 2 15 3 grprinv GGrpYBY+˙NY=0G
17 16 3adant2 GGrpXBYBY+˙NY=0G
18 17 oveq1d GGrpXBYBY+˙NY+˙NX=0G+˙NX
19 1 2 grpass GGrpYBNYBNXBY+˙NY+˙NX=Y+˙NY+˙NX
20 4 6 8 10 19 syl13anc GGrpXBYBY+˙NY+˙NX=Y+˙NY+˙NX
21 1 2 15 grplid GGrpNXB0G+˙NX=NX
22 4 10 21 syl2anc GGrpXBYB0G+˙NX=NX
23 18 20 22 3eqtr3d GGrpXBYBY+˙NY+˙NX=NX
24 23 oveq2d GGrpXBYBX+˙Y+˙NY+˙NX=X+˙NX
25 1 2 15 3 grprinv GGrpXBX+˙NX=0G
26 25 3adant3 GGrpXBYBX+˙NX=0G
27 14 24 26 3eqtrd GGrpXBYBX+˙Y+˙NY+˙NX=0G
28 1 2 grpcl GGrpXBYBX+˙YB
29 1 2 15 3 grpinvid1 GGrpX+˙YBNY+˙NXBNX+˙Y=NY+˙NXX+˙Y+˙NY+˙NX=0G
30 4 28 12 29 syl3anc GGrpXBYBNX+˙Y=NY+˙NXX+˙Y+˙NY+˙NX=0G
31 27 30 mpbird GGrpXBYBNX+˙Y=NY+˙NX