Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of Herstein p. 55. (Contributed by NM, 27-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvadd.b | |
|
grpinvadd.p | |
||
grpinvadd.n | |
||
Assertion | grpinvadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvadd.b | |
|
2 | grpinvadd.p | |
|
3 | grpinvadd.n | |
|
4 | simp1 | |
|
5 | simp2 | |
|
6 | simp3 | |
|
7 | 1 3 | grpinvcl | |
8 | 7 | 3adant2 | |
9 | 1 3 | grpinvcl | |
10 | 9 | 3adant3 | |
11 | 1 2 | grpcl | |
12 | 4 8 10 11 | syl3anc | |
13 | 1 2 | grpass | |
14 | 4 5 6 12 13 | syl13anc | |
15 | eqid | |
|
16 | 1 2 15 3 | grprinv | |
17 | 16 | 3adant2 | |
18 | 17 | oveq1d | |
19 | 1 2 | grpass | |
20 | 4 6 8 10 19 | syl13anc | |
21 | 1 2 15 | grplid | |
22 | 4 10 21 | syl2anc | |
23 | 18 20 22 | 3eqtr3d | |
24 | 23 | oveq2d | |
25 | 1 2 15 3 | grprinv | |
26 | 25 | 3adant3 | |
27 | 14 24 26 | 3eqtrd | |
28 | 1 2 | grpcl | |
29 | 1 2 15 3 | grpinvid1 | |
30 | 4 28 12 29 | syl3anc | |
31 | 27 30 | mpbird | |