Metamath Proof Explorer


Theorem grpinvid1

Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011)

Ref Expression
Hypotheses grpinv.b B=BaseG
grpinv.p +˙=+G
grpinv.u 0˙=0G
grpinv.n N=invgG
Assertion grpinvid1 GGrpXBYBNX=YX+˙Y=0˙

Proof

Step Hyp Ref Expression
1 grpinv.b B=BaseG
2 grpinv.p +˙=+G
3 grpinv.u 0˙=0G
4 grpinv.n N=invgG
5 oveq2 NX=YX+˙NX=X+˙Y
6 5 adantl GGrpXBYBNX=YX+˙NX=X+˙Y
7 1 2 3 4 grprinv GGrpXBX+˙NX=0˙
8 7 3adant3 GGrpXBYBX+˙NX=0˙
9 8 adantr GGrpXBYBNX=YX+˙NX=0˙
10 6 9 eqtr3d GGrpXBYBNX=YX+˙Y=0˙
11 oveq2 X+˙Y=0˙NX+˙X+˙Y=NX+˙0˙
12 11 adantl GGrpXBYBX+˙Y=0˙NX+˙X+˙Y=NX+˙0˙
13 1 2 3 4 grplinv GGrpXBNX+˙X=0˙
14 13 oveq1d GGrpXBNX+˙X+˙Y=0˙+˙Y
15 14 3adant3 GGrpXBYBNX+˙X+˙Y=0˙+˙Y
16 1 4 grpinvcl GGrpXBNXB
17 16 adantrr GGrpXBYBNXB
18 simprl GGrpXBYBXB
19 simprr GGrpXBYBYB
20 17 18 19 3jca GGrpXBYBNXBXBYB
21 1 2 grpass GGrpNXBXBYBNX+˙X+˙Y=NX+˙X+˙Y
22 20 21 syldan GGrpXBYBNX+˙X+˙Y=NX+˙X+˙Y
23 22 3impb GGrpXBYBNX+˙X+˙Y=NX+˙X+˙Y
24 15 23 eqtr3d GGrpXBYB0˙+˙Y=NX+˙X+˙Y
25 1 2 3 grplid GGrpYB0˙+˙Y=Y
26 25 3adant2 GGrpXBYB0˙+˙Y=Y
27 24 26 eqtr3d GGrpXBYBNX+˙X+˙Y=Y
28 27 adantr GGrpXBYBX+˙Y=0˙NX+˙X+˙Y=Y
29 1 2 3 grprid GGrpNXBNX+˙0˙=NX
30 16 29 syldan GGrpXBNX+˙0˙=NX
31 30 3adant3 GGrpXBYBNX+˙0˙=NX
32 31 adantr GGrpXBYBX+˙Y=0˙NX+˙0˙=NX
33 12 28 32 3eqtr3rd GGrpXBYBX+˙Y=0˙NX=Y
34 10 33 impbida GGrpXBYBNX=YX+˙Y=0˙