Metamath Proof Explorer


Theorem grprinvlem

Description: Lemma for grpinva . (Contributed by NM, 9-Aug-2013)

Ref Expression
Hypotheses grprinvlem.c φxByBx+˙yB
grprinvlem.o φOB
grprinvlem.i φxBO+˙x=x
grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
grprinvlem.n φxByBy+˙x=O
grprinvlem.x φψXB
grprinvlem.e φψX+˙X=X
Assertion grprinvlem φψX=O

Proof

Step Hyp Ref Expression
1 grprinvlem.c φxByBx+˙yB
2 grprinvlem.o φOB
3 grprinvlem.i φxBO+˙x=x
4 grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 grprinvlem.n φxByBy+˙x=O
6 grprinvlem.x φψXB
7 grprinvlem.e φψX+˙X=X
8 5 ralrimiva φxByBy+˙x=O
9 oveq2 x=zy+˙x=y+˙z
10 9 eqeq1d x=zy+˙x=Oy+˙z=O
11 10 rexbidv x=zyBy+˙x=OyBy+˙z=O
12 11 cbvralvw xByBy+˙x=OzByBy+˙z=O
13 8 12 sylib φzByBy+˙z=O
14 oveq2 z=Xy+˙z=y+˙X
15 14 eqeq1d z=Xy+˙z=Oy+˙X=O
16 15 rexbidv z=XyBy+˙z=OyBy+˙X=O
17 16 rspccva zByBy+˙z=OXByBy+˙X=O
18 13 6 17 syl2an2r φψyBy+˙X=O
19 7 oveq2d φψy+˙X+˙X=y+˙X
20 19 adantr φψyBy+˙X=Oy+˙X+˙X=y+˙X
21 simprr φψyBy+˙X=Oy+˙X=O
22 21 oveq1d φψyBy+˙X=Oy+˙X+˙X=O+˙X
23 4 caovassg φuBvBwBu+˙v+˙w=u+˙v+˙w
24 23 ad4ant14 φψyBy+˙X=OuBvBwBu+˙v+˙w=u+˙v+˙w
25 simprl φψyBy+˙X=OyB
26 6 adantr φψyBy+˙X=OXB
27 24 25 26 26 caovassd φψyBy+˙X=Oy+˙X+˙X=y+˙X+˙X
28 oveq2 y=XO+˙y=O+˙X
29 id y=Xy=X
30 28 29 eqeq12d y=XO+˙y=yO+˙X=X
31 3 ralrimiva φxBO+˙x=x
32 oveq2 x=yO+˙x=O+˙y
33 id x=yx=y
34 32 33 eqeq12d x=yO+˙x=xO+˙y=y
35 34 cbvralvw xBO+˙x=xyBO+˙y=y
36 31 35 sylib φyBO+˙y=y
37 36 adantr φψyBO+˙y=y
38 30 37 6 rspcdva φψO+˙X=X
39 38 adantr φψyBy+˙X=OO+˙X=X
40 22 27 39 3eqtr3d φψyBy+˙X=Oy+˙X+˙X=X
41 20 40 21 3eqtr3d φψyBy+˙X=OX=O
42 18 41 rexlimddv φψX=O