Description: Lemma for grpinva . (Contributed by NM, 9-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grprinvlem.c | |
|
grprinvlem.o | |
||
grprinvlem.i | |
||
grprinvlem.a | |
||
grprinvlem.n | |
||
grprinvlem.x | |
||
grprinvlem.e | |
||
Assertion | grprinvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.c | |
|
2 | grprinvlem.o | |
|
3 | grprinvlem.i | |
|
4 | grprinvlem.a | |
|
5 | grprinvlem.n | |
|
6 | grprinvlem.x | |
|
7 | grprinvlem.e | |
|
8 | 5 | ralrimiva | |
9 | oveq2 | |
|
10 | 9 | eqeq1d | |
11 | 10 | rexbidv | |
12 | 11 | cbvralvw | |
13 | 8 12 | sylib | |
14 | oveq2 | |
|
15 | 14 | eqeq1d | |
16 | 15 | rexbidv | |
17 | 16 | rspccva | |
18 | 13 6 17 | syl2an2r | |
19 | 7 | oveq2d | |
20 | 19 | adantr | |
21 | simprr | |
|
22 | 21 | oveq1d | |
23 | 4 | caovassg | |
24 | 23 | ad4ant14 | |
25 | simprl | |
|
26 | 6 | adantr | |
27 | 24 25 26 26 | caovassd | |
28 | oveq2 | |
|
29 | id | |
|
30 | 28 29 | eqeq12d | |
31 | 3 | ralrimiva | |
32 | oveq2 | |
|
33 | id | |
|
34 | 32 33 | eqeq12d | |
35 | 34 | cbvralvw | |
36 | 31 35 | sylib | |
37 | 36 | adantr | |
38 | 30 37 6 | rspcdva | |
39 | 38 | adantr | |
40 | 22 27 39 | 3eqtr3d | |
41 | 20 40 21 | 3eqtr3d | |
42 | 18 41 | rexlimddv | |