Description: Lemma 1 for gsmsymgreq . (Contributed by AV, 26-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsmsymgrfix.s | |
|
gsmsymgrfix.b | |
||
gsmsymgreq.z | |
||
gsmsymgreq.p | |
||
gsmsymgreq.i | |
||
Assertion | gsmsymgreqlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmsymgrfix.s | |
|
2 | gsmsymgrfix.b | |
|
3 | gsmsymgreq.z | |
|
4 | gsmsymgreq.p | |
|
5 | gsmsymgreq.i | |
|
6 | simpr | |
|
7 | simpr | |
|
8 | 6 7 | anim12i | |
9 | 8 | 3adant3 | |
10 | 9 | adantl | |
11 | 10 | adantr | |
12 | simpll3 | |
|
13 | simpr | |
|
14 | 13 | adantl | |
15 | simprl | |
|
16 | 12 14 15 | 3jca | |
17 | 1 2 3 4 5 | fvcosymgeq | |
18 | 11 16 17 | sylc | |
19 | simpl1 | |
|
20 | simpr1l | |
|
21 | simpr1r | |
|
22 | 19 20 21 | 3jca | |
23 | 22 | adantr | |
24 | 1 2 | gsumccatsymgsn | |
25 | 23 24 | syl | |
26 | 25 | fveq1d | |
27 | simpl2 | |
|
28 | simpr2l | |
|
29 | simpr2r | |
|
30 | 27 28 29 | 3jca | |
31 | 30 | adantr | |
32 | 3 4 | gsumccatsymgsn | |
33 | 31 32 | syl | |
34 | 33 | fveq1d | |
35 | 18 26 34 | 3eqtr4d | |
36 | 35 | ex | |