Metamath Proof Explorer


Theorem gsumbagdiag

Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024)

Ref Expression
Hypotheses gsumbagdiag.d D=f0I|f-1Fin
gsumbagdiag.s S=yD|yfF
gsumbagdiag.f φFD
gsumbagdiag.b B=BaseG
gsumbagdiag.g φGCMnd
gsumbagdiag.x φjSkxD|xfFfjXB
Assertion gsumbagdiag φGjS,kxD|xfFfjX=GkS,jxD|xfFfkX

Proof

Step Hyp Ref Expression
1 gsumbagdiag.d D=f0I|f-1Fin
2 gsumbagdiag.s S=yD|yfF
3 gsumbagdiag.f φFD
4 gsumbagdiag.b B=BaseG
5 gsumbagdiag.g φGCMnd
6 gsumbagdiag.x φjSkxD|xfFfjXB
7 eqid 0G=0G
8 1 psrbaglefi FDyD|yfFFin
9 3 8 syl φyD|yfFFin
10 2 9 eqeltrid φSFin
11 ovex 0IV
12 1 11 rab2ex xD|xfFfjV
13 12 a1i φjSxD|xfFfjV
14 xpfi SFinSFinS×SFin
15 10 10 14 syl2anc φS×SFin
16 simprl φjSkxD|xfFfjjS
17 1 2 3 gsumbagdiaglem φjSkxD|xfFfjkSjxD|xfFfk
18 17 simpld φjSkxD|xfFfjkS
19 brxp jS×SkjSkS
20 16 18 19 sylanbrc φjSkxD|xfFfjjS×Sk
21 20 pm2.24d φjSkxD|xfFfj¬jS×SkX=0G
22 21 impr φjSkxD|xfFfj¬jS×SkX=0G
23 1 2 3 gsumbagdiaglem φkSjxD|xfFfkjSkxD|xfFfj
24 17 23 impbida φjSkxD|xfFfjkSjxD|xfFfk
25 4 7 5 10 13 6 15 22 10 24 gsumcom2 φGjS,kxD|xfFfjX=GkS,jxD|xfFfkX