Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Revised by AV, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsnd.b | |
|
gsumsnd.g | |
||
gsumsnd.m | |
||
gsumsnd.c | |
||
gsumsnd.s | |
||
gsumsnfd.p | |
||
gsumsnfd.c | |
||
Assertion | gsumsnfd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnd.b | |
|
2 | gsumsnd.g | |
|
3 | gsumsnd.m | |
|
4 | gsumsnd.c | |
|
5 | gsumsnd.s | |
|
6 | gsumsnfd.p | |
|
7 | gsumsnfd.c | |
|
8 | elsni | |
|
9 | 8 5 | sylan2 | |
10 | 6 9 | mpteq2da | |
11 | 10 | oveq2d | |
12 | snfi | |
|
13 | 12 | a1i | |
14 | eqid | |
|
15 | 7 1 14 | gsumconstf | |
16 | 2 13 4 15 | syl3anc | |
17 | 11 16 | eqtrd | |
18 | hashsng | |
|
19 | 3 18 | syl | |
20 | 19 | oveq1d | |
21 | 1 14 | mulg1 | |
22 | 4 21 | syl | |
23 | 17 20 22 | 3eqtrd | |