Metamath Proof Explorer


Theorem gsumsnfd

Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Revised by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnd.b B=BaseG
gsumsnd.g φGMnd
gsumsnd.m φMV
gsumsnd.c φCB
gsumsnd.s φk=MA=C
gsumsnfd.p kφ
gsumsnfd.c _kC
Assertion gsumsnfd φGkMA=C

Proof

Step Hyp Ref Expression
1 gsumsnd.b B=BaseG
2 gsumsnd.g φGMnd
3 gsumsnd.m φMV
4 gsumsnd.c φCB
5 gsumsnd.s φk=MA=C
6 gsumsnfd.p kφ
7 gsumsnfd.c _kC
8 elsni kMk=M
9 8 5 sylan2 φkMA=C
10 6 9 mpteq2da φkMA=kMC
11 10 oveq2d φGkMA=GkMC
12 snfi MFin
13 12 a1i φMFin
14 eqid G=G
15 7 1 14 gsumconstf GMndMFinCBGkMC=MGC
16 2 13 4 15 syl3anc φGkMC=MGC
17 11 16 eqtrd φGkMA=MGC
18 hashsng MVM=1
19 3 18 syl φM=1
20 19 oveq1d φMGC=1GC
21 1 14 mulg1 CB1GC=C
22 4 21 syl φ1GC=C
23 17 20 22 3eqtrd φGkMA=C