Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumxp.b | |
|
gsumxp.z | |
||
gsumxp.g | |
||
gsumxp.a | |
||
gsumxp.r | |
||
gsumxp.f | |
||
gsumxp.w | |
||
Assertion | gsumxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumxp.b | |
|
2 | gsumxp.z | |
|
3 | gsumxp.g | |
|
4 | gsumxp.a | |
|
5 | gsumxp.r | |
|
6 | gsumxp.f | |
|
7 | gsumxp.w | |
|
8 | 4 5 | xpexd | |
9 | relxp | |
|
10 | 9 | a1i | |
11 | dmxpss | |
|
12 | 11 | a1i | |
13 | 1 2 3 8 10 4 12 6 7 | gsum2d | |
14 | df-ima | |
|
15 | df-res | |
|
16 | inxp | |
|
17 | 15 16 | eqtri | |
18 | simpr | |
|
19 | 18 | snssd | |
20 | sseqin2 | |
|
21 | 19 20 | sylib | |
22 | inv1 | |
|
23 | 22 | a1i | |
24 | 21 23 | xpeq12d | |
25 | 17 24 | eqtrid | |
26 | 25 | rneqd | |
27 | vex | |
|
28 | 27 | snnz | |
29 | rnxp | |
|
30 | 28 29 | ax-mp | |
31 | 26 30 | eqtrdi | |
32 | 14 31 | eqtrid | |
33 | 32 | mpteq1d | |
34 | 33 | oveq2d | |
35 | 34 | mpteq2dva | |
36 | 35 | oveq2d | |
37 | 13 36 | eqtrd | |