Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumzresunsn.b | |
|
gsumzresunsn.p | |
||
gsumzresunsn.z | |
||
gsumzresunsn.y | |
||
gsumzresunsn.f | |
||
gsumzresunsn.1 | |
||
gsumzresunsn.g | |
||
gsumzresunsn.a | |
||
gsumzresunsn.2 | |
||
gsumzresunsn.3 | |
||
gsumzresunsn.4 | |
||
gsumzresunsn.5 | |
||
Assertion | gsumzresunsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzresunsn.b | |
|
2 | gsumzresunsn.p | |
|
3 | gsumzresunsn.z | |
|
4 | gsumzresunsn.y | |
|
5 | gsumzresunsn.f | |
|
6 | gsumzresunsn.1 | |
|
7 | gsumzresunsn.g | |
|
8 | gsumzresunsn.a | |
|
9 | gsumzresunsn.2 | |
|
10 | gsumzresunsn.3 | |
|
11 | gsumzresunsn.4 | |
|
12 | gsumzresunsn.5 | |
|
13 | eqid | |
|
14 | df-ima | |
|
15 | 10 | snssd | |
16 | 6 15 | unssd | |
17 | 5 16 | feqresmpt | |
18 | 17 | rneqd | |
19 | 14 18 | eqtrid | |
20 | 19 | fveq2d | |
21 | 12 19 20 | 3sstr3d | |
22 | 5 | adantr | |
23 | 6 | sselda | |
24 | 22 23 | ffvelcdmd | |
25 | simpr | |
|
26 | 25 | fveq2d | |
27 | 26 4 | eqtr4di | |
28 | 1 2 3 13 7 8 21 24 10 9 11 27 | gsumzunsnd | |
29 | 17 | oveq2d | |
30 | 5 6 | feqresmpt | |
31 | 30 | oveq2d | |
32 | 31 | oveq1d | |
33 | 28 29 32 | 3eqtr4d | |