Metamath Proof Explorer


Theorem gsumzresunsn

Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses gsumzresunsn.b B = Base G
gsumzresunsn.p + ˙ = + G
gsumzresunsn.z Z = Cntz G
gsumzresunsn.y Y = F X
gsumzresunsn.f φ F : C B
gsumzresunsn.1 φ A C
gsumzresunsn.g φ G Mnd
gsumzresunsn.a φ A Fin
gsumzresunsn.2 φ ¬ X A
gsumzresunsn.3 φ X C
gsumzresunsn.4 φ Y B
gsumzresunsn.5 φ F A X Z F A X
Assertion gsumzresunsn φ G F A X = G F A + ˙ Y

Proof

Step Hyp Ref Expression
1 gsumzresunsn.b B = Base G
2 gsumzresunsn.p + ˙ = + G
3 gsumzresunsn.z Z = Cntz G
4 gsumzresunsn.y Y = F X
5 gsumzresunsn.f φ F : C B
6 gsumzresunsn.1 φ A C
7 gsumzresunsn.g φ G Mnd
8 gsumzresunsn.a φ A Fin
9 gsumzresunsn.2 φ ¬ X A
10 gsumzresunsn.3 φ X C
11 gsumzresunsn.4 φ Y B
12 gsumzresunsn.5 φ F A X Z F A X
13 eqid x A X F x = x A X F x
14 df-ima F A X = ran F A X
15 10 snssd φ X C
16 6 15 unssd φ A X C
17 5 16 feqresmpt φ F A X = x A X F x
18 17 rneqd φ ran F A X = ran x A X F x
19 14 18 syl5eq φ F A X = ran x A X F x
20 19 fveq2d φ Z F A X = Z ran x A X F x
21 12 19 20 3sstr3d φ ran x A X F x Z ran x A X F x
22 5 adantr φ x A F : C B
23 6 sselda φ x A x C
24 22 23 ffvelrnd φ x A F x B
25 simpr φ x = X x = X
26 25 fveq2d φ x = X F x = F X
27 26 4 eqtr4di φ x = X F x = Y
28 1 2 3 13 7 8 21 24 10 9 11 27 gsumzunsnd φ G x A X F x = G x A F x + ˙ Y
29 17 oveq2d φ G F A X = G x A X F x
30 5 6 feqresmpt φ F A = x A F x
31 30 oveq2d φ G F A = G x A F x
32 31 oveq1d φ G F A + ˙ Y = G x A F x + ˙ Y
33 28 29 32 3eqtr4d φ G F A X = G F A + ˙ Y