Metamath Proof Explorer


Theorem gsumzresunsn

Description: Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Hypotheses gsumzresunsn.b B=BaseG
gsumzresunsn.p +˙=+G
gsumzresunsn.z Z=CntzG
gsumzresunsn.y Y=FX
gsumzresunsn.f φF:CB
gsumzresunsn.1 φAC
gsumzresunsn.g φGMnd
gsumzresunsn.a φAFin
gsumzresunsn.2 φ¬XA
gsumzresunsn.3 φXC
gsumzresunsn.4 φYB
gsumzresunsn.5 φFAXZFAX
Assertion gsumzresunsn φGFAX=GFA+˙Y

Proof

Step Hyp Ref Expression
1 gsumzresunsn.b B=BaseG
2 gsumzresunsn.p +˙=+G
3 gsumzresunsn.z Z=CntzG
4 gsumzresunsn.y Y=FX
5 gsumzresunsn.f φF:CB
6 gsumzresunsn.1 φAC
7 gsumzresunsn.g φGMnd
8 gsumzresunsn.a φAFin
9 gsumzresunsn.2 φ¬XA
10 gsumzresunsn.3 φXC
11 gsumzresunsn.4 φYB
12 gsumzresunsn.5 φFAXZFAX
13 eqid xAXFx=xAXFx
14 df-ima FAX=ranFAX
15 10 snssd φXC
16 6 15 unssd φAXC
17 5 16 feqresmpt φFAX=xAXFx
18 17 rneqd φranFAX=ranxAXFx
19 14 18 eqtrid φFAX=ranxAXFx
20 19 fveq2d φZFAX=ZranxAXFx
21 12 19 20 3sstr3d φranxAXFxZranxAXFx
22 5 adantr φxAF:CB
23 6 sselda φxAxC
24 22 23 ffvelcdmd φxAFxB
25 simpr φx=Xx=X
26 25 fveq2d φx=XFx=FX
27 26 4 eqtr4di φx=XFx=Y
28 1 2 3 13 7 8 21 24 10 9 11 27 gsumzunsnd φGxAXFx=GxAFx+˙Y
29 17 oveq2d φGFAX=GxAXFx
30 5 6 feqresmpt φFA=xAFx
31 30 oveq2d φGFA=GxAFx
32 31 oveq1d φGFA+˙Y=GxAFx+˙Y
33 28 29 32 3eqtr4d φGFAX=GFA+˙Y