Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumzsubmcl.0 | |
|
gsumzsubmcl.z | |
||
gsumzsubmcl.g | |
||
gsumzsubmcl.a | |
||
gsumzsubmcl.s | |
||
gsumzsubmcl.f | |
||
gsumzsubmcl.c | |
||
gsumzsubmcl.w | |
||
Assertion | gsumzsubmcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzsubmcl.0 | |
|
2 | gsumzsubmcl.z | |
|
3 | gsumzsubmcl.g | |
|
4 | gsumzsubmcl.a | |
|
5 | gsumzsubmcl.s | |
|
6 | gsumzsubmcl.f | |
|
7 | gsumzsubmcl.c | |
|
8 | gsumzsubmcl.w | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 12 | submmnd | |
14 | 5 13 | syl | |
15 | 12 | submbas | |
16 | 5 15 | syl | |
17 | 16 | feq3d | |
18 | 6 17 | mpbid | |
19 | 6 | frnd | |
20 | 7 19 | ssind | |
21 | 12 2 11 | resscntz | |
22 | 5 19 21 | syl2anc | |
23 | 20 22 | sseqtrrd | |
24 | 12 1 | subm0 | |
25 | 5 24 | syl | |
26 | 8 25 | breqtrd | |
27 | 9 10 11 14 4 18 23 26 | gsumzcl | |
28 | 4 5 6 12 | gsumsubm | |
29 | 27 28 16 | 3eltr4d | |