| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzsubmcl.0 |  | 
						
							| 2 |  | gsumzsubmcl.z |  | 
						
							| 3 |  | gsumzsubmcl.g |  | 
						
							| 4 |  | gsumzsubmcl.a |  | 
						
							| 5 |  | gsumzsubmcl.s |  | 
						
							| 6 |  | gsumzsubmcl.f |  | 
						
							| 7 |  | gsumzsubmcl.c |  | 
						
							| 8 |  | gsumzsubmcl.w |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | submmnd |  | 
						
							| 14 | 5 13 | syl |  | 
						
							| 15 | 12 | submbas |  | 
						
							| 16 | 5 15 | syl |  | 
						
							| 17 | 16 | feq3d |  | 
						
							| 18 | 6 17 | mpbid |  | 
						
							| 19 | 6 | frnd |  | 
						
							| 20 | 7 19 | ssind |  | 
						
							| 21 | 12 2 11 | resscntz |  | 
						
							| 22 | 5 19 21 | syl2anc |  | 
						
							| 23 | 20 22 | sseqtrrd |  | 
						
							| 24 | 12 1 | subm0 |  | 
						
							| 25 | 5 24 | syl |  | 
						
							| 26 | 8 25 | breqtrd |  | 
						
							| 27 | 9 10 11 14 4 18 23 26 | gsumzcl |  | 
						
							| 28 | 4 5 6 12 | gsumsubm |  | 
						
							| 29 | 27 28 16 | 3eltr4d |  |