Metamath Proof Explorer


Theorem harmonicbnd3

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion harmonicbnd3 N 0 m = 1 N 1 m log N + 1 0 γ

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 0re 0
3 emre γ
4 2re 2
5 ere e
6 egt2lt3 2 < e e < 3
7 6 simpli 2 < e
8 4 5 7 ltleii 2 e
9 2rp 2 +
10 epr e +
11 logleb 2 + e + 2 e log 2 log e
12 9 10 11 mp2an 2 e log 2 log e
13 8 12 mpbi log 2 log e
14 loge log e = 1
15 13 14 breqtri log 2 1
16 1re 1
17 relogcl 2 + log 2
18 9 17 ax-mp log 2
19 16 18 subge0i 0 1 log 2 log 2 1
20 15 19 mpbir 0 1 log 2
21 3 leidi γ γ
22 iccss 0 γ 0 1 log 2 γ γ 1 log 2 γ 0 γ
23 2 3 20 21 22 mp4an 1 log 2 γ 0 γ
24 harmonicbnd2 N m = 1 N 1 m log N + 1 1 log 2 γ
25 23 24 sseldi N m = 1 N 1 m log N + 1 0 γ
26 oveq2 N = 0 1 N = 1 0
27 fz10 1 0 =
28 26 27 eqtrdi N = 0 1 N =
29 28 sumeq1d N = 0 m = 1 N 1 m = m 1 m
30 sum0 m 1 m = 0
31 29 30 eqtrdi N = 0 m = 1 N 1 m = 0
32 fv0p1e1 N = 0 log N + 1 = log 1
33 log1 log 1 = 0
34 32 33 eqtrdi N = 0 log N + 1 = 0
35 31 34 oveq12d N = 0 m = 1 N 1 m log N + 1 = 0 0
36 0m0e0 0 0 = 0
37 35 36 eqtrdi N = 0 m = 1 N 1 m log N + 1 = 0
38 2 leidi 0 0
39 emgt0 0 < γ
40 2 3 39 ltleii 0 γ
41 2 3 elicc2i 0 0 γ 0 0 0 0 γ
42 2 38 40 41 mpbir3an 0 0 γ
43 37 42 eqeltrdi N = 0 m = 1 N 1 m log N + 1 0 γ
44 25 43 jaoi N N = 0 m = 1 N 1 m log N + 1 0 γ
45 1 44 sylbi N 0 m = 1 N 1 m log N + 1 0 γ