| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnexinjle.1 |
|
| 2 |
|
hashnexinjle.2 |
|
| 3 |
|
hashnexinjle.3 |
|
| 4 |
|
hashnexinjle.4 |
|
| 5 |
|
hashnexinjle.5 |
|
| 6 |
|
simpr |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
eqeq2d |
|
| 9 |
|
breq2 |
|
| 10 |
8 9
|
anbi12d |
|
| 11 |
|
fveqeq2 |
|
| 12 |
|
breq1 |
|
| 13 |
11 12
|
anbi12d |
|
| 14 |
10 13
|
cbvrex2vw |
|
| 15 |
14
|
a1i |
|
| 16 |
15
|
biimpd |
|
| 17 |
16
|
imp |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
|
breq2 |
|
| 21 |
19 20
|
anbi12d |
|
| 22 |
|
fveqeq2 |
|
| 23 |
|
breq1 |
|
| 24 |
22 23
|
anbi12d |
|
| 25 |
21 24
|
cbvrex2vw |
|
| 26 |
17 25
|
sylib |
|
| 27 |
|
rexcom |
|
| 28 |
26 27
|
sylib |
|
| 29 |
1 2 3 4
|
hashnexinj |
|
| 30 |
|
simplrl |
|
| 31 |
|
simpr |
|
| 32 |
30 31
|
jca |
|
| 33 |
32
|
orcd |
|
| 34 |
|
simplrl |
|
| 35 |
34
|
eqcomd |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
jca |
|
| 38 |
37
|
olcd |
|
| 39 |
|
simprr |
|
| 40 |
|
simpl |
|
| 41 |
|
simprl |
|
| 42 |
40 41
|
jca |
|
| 43 |
5
|
sselda |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
|
simprr |
|
| 47 |
40 46
|
jca |
|
| 48 |
5
|
sselda |
|
| 49 |
47 48
|
syl |
|
| 50 |
49
|
adantr |
|
| 51 |
45 50
|
lttri2d |
|
| 52 |
39 51
|
mpbid |
|
| 53 |
33 38 52
|
mpjaodan |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
reximdvva |
|
| 56 |
55
|
imp |
|
| 57 |
|
r19.43 |
|
| 58 |
57
|
rexbii |
|
| 59 |
56 58
|
sylib |
|
| 60 |
|
r19.43 |
|
| 61 |
59 60
|
sylib |
|
| 62 |
61
|
ex |
|
| 63 |
29 62
|
mpd |
|
| 64 |
6 28 63
|
mpjaodan |
|