Metamath Proof Explorer


Theorem hashreshashfun

Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021)

Ref Expression
Assertion hashreshashfun FunAAFinBdomAA=AB+domAB

Proof

Step Hyp Ref Expression
1 simp1 FunAAFinBdomAFunA
2 hashfun AFinFunAA=domA
3 2 3ad2ant2 FunAAFinBdomAFunAA=domA
4 1 3 mpbid FunAAFinBdomAA=domA
5 dmfi AFindomAFin
6 5 anim1i AFinBdomAdomAFinBdomA
7 6 3adant1 FunAAFinBdomAdomAFinBdomA
8 hashssdif domAFinBdomAdomAB=domAB
9 7 8 syl FunAAFinBdomAdomAB=domAB
10 9 oveq2d FunAAFinBdomAB+domAB=B+domA-B
11 ssfi domAFinBdomABFin
12 11 ex domAFinBdomABFin
13 hashcl BFinB0
14 13 nn0cnd BFinB
15 12 14 syl6 domAFinBdomAB
16 5 15 syl AFinBdomAB
17 16 imp AFinBdomAB
18 hashcl domAFindomA0
19 5 18 syl AFindomA0
20 19 nn0cnd AFindomA
21 20 adantr AFinBdomAdomA
22 17 21 jca AFinBdomABdomA
23 22 3adant1 FunAAFinBdomABdomA
24 pncan3 BdomAB+domA-B=domA
25 23 24 syl FunAAFinBdomAB+domA-B=domA
26 10 25 eqtr2d FunAAFinBdomAdomA=B+domAB
27 hashres FunAAFinBdomAAB=B
28 27 eqcomd FunAAFinBdomAB=AB
29 28 oveq1d FunAAFinBdomAB+domAB=AB+domAB
30 4 26 29 3eqtrd FunAAFinBdomAA=AB+domAB