| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishaus2 |  | 
						
							| 2 |  | topontop |  | 
						
							| 3 |  | simp1 |  | 
						
							| 4 |  | simp2 |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 |  | opnneip |  | 
						
							| 7 | 3 4 5 6 | syl2an3an |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 |  | opnneip |  | 
						
							| 11 | 3 8 9 10 | syl2an3an |  | 
						
							| 12 |  | simpr3 |  | 
						
							| 13 |  | ineq1 |  | 
						
							| 14 | 13 | eqeq1d |  | 
						
							| 15 |  | ineq2 |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 | 14 16 | rspc2ev |  | 
						
							| 18 | 7 11 12 17 | syl3anc |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 | 19 | 3expib |  | 
						
							| 21 | 20 | rexlimdvv |  | 
						
							| 22 |  | neii2 |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 |  | neii2 |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 |  | vex |  | 
						
							| 27 | 26 | snss |  | 
						
							| 28 | 27 | anbi1i |  | 
						
							| 29 |  | vex |  | 
						
							| 30 | 29 | snss |  | 
						
							| 31 | 30 | anbi1i |  | 
						
							| 32 |  | simp1l |  | 
						
							| 33 |  | simp2l |  | 
						
							| 34 |  | ss2in |  | 
						
							| 35 |  | ssn0 |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 36 | necon4d |  | 
						
							| 38 | 34 37 | syl |  | 
						
							| 39 | 38 | ad2ant2l |  | 
						
							| 40 | 39 | 3impia |  | 
						
							| 41 | 32 33 40 | 3jca |  | 
						
							| 42 | 41 | 3exp |  | 
						
							| 43 | 31 42 | biimtrrid |  | 
						
							| 44 | 43 | com3r |  | 
						
							| 45 | 44 | imp |  | 
						
							| 46 | 45 | 3adant1 |  | 
						
							| 47 | 46 | reximdv |  | 
						
							| 48 | 47 | 3exp |  | 
						
							| 49 | 48 | com34 |  | 
						
							| 50 | 49 | 3imp |  | 
						
							| 51 | 28 50 | biimtrrid |  | 
						
							| 52 | 51 | reximdv |  | 
						
							| 53 | 52 | 3exp |  | 
						
							| 54 | 53 | com24 |  | 
						
							| 55 | 54 | impd |  | 
						
							| 56 | 23 25 55 | syl2and |  | 
						
							| 57 | 56 | rexlimdvv |  | 
						
							| 58 | 21 57 | impbid |  | 
						
							| 59 | 58 | imbi2d |  | 
						
							| 60 | 59 | 2ralbidv |  | 
						
							| 61 | 2 60 | syl |  | 
						
							| 62 | 1 61 | bitrd |  |