Metamath Proof Explorer


Theorem hdmap14lem14

Description: Part of proof of part 14 in Baer p. 50 line 3. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h H=LHypK
hdmap14lem12.u U=DVecHKW
hdmap14lem12.v V=BaseU
hdmap14lem12.t ·˙=U
hdmap14lem12.r R=ScalarU
hdmap14lem12.b B=BaseR
hdmap14lem12.c C=LCDualKW
hdmap14lem12.e ˙=C
hdmap14lem12.s S=HDMapKW
hdmap14lem12.k φKHLWH
hdmap14lem12.f φFB
hdmap14lem12.p P=ScalarC
hdmap14lem12.a A=BaseP
Assertion hdmap14lem14 φ∃!gAxVSF·˙x=g˙Sx

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h H=LHypK
2 hdmap14lem12.u U=DVecHKW
3 hdmap14lem12.v V=BaseU
4 hdmap14lem12.t ·˙=U
5 hdmap14lem12.r R=ScalarU
6 hdmap14lem12.b B=BaseR
7 hdmap14lem12.c C=LCDualKW
8 hdmap14lem12.e ˙=C
9 hdmap14lem12.s S=HDMapKW
10 hdmap14lem12.k φKHLWH
11 hdmap14lem12.f φFB
12 hdmap14lem12.p P=ScalarC
13 hdmap14lem12.a A=BaseP
14 eqid 0U=0U
15 1 2 3 14 10 dvh1dim φyVy0U
16 10 3ad2ant1 φyVy0UKHLWH
17 3simpc φyVy0UyVy0U
18 eldifsn yV0UyVy0U
19 17 18 sylibr φyVy0UyV0U
20 11 3ad2ant1 φyVy0UFB
21 1 2 3 4 14 5 6 7 8 12 13 9 16 19 20 hdmap14lem7 φyVy0U∃!gASF·˙y=g˙Sy
22 simpl1 φyVy0UgAφ
23 22 10 syl φyVy0UgAKHLWH
24 22 11 syl φyVy0UgAFB
25 19 adantr φyVy0UgAyV0U
26 simpr φyVy0UgAgA
27 1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26 hdmap14lem13 φyVy0UgASF·˙y=g˙SyxVSF·˙x=g˙Sx
28 27 reubidva φyVy0U∃!gASF·˙y=g˙Sy∃!gAxVSF·˙x=g˙Sx
29 21 28 mpbid φyVy0U∃!gAxVSF·˙x=g˙Sx
30 29 rexlimdv3a φyVy0U∃!gAxVSF·˙x=g˙Sx
31 15 30 mpd φ∃!gAxVSF·˙x=g˙Sx