Description: Part of proof of part 14 in Baer p. 50 line 3. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap14lem12.h | |
|
hdmap14lem12.u | |
||
hdmap14lem12.v | |
||
hdmap14lem12.t | |
||
hdmap14lem12.r | |
||
hdmap14lem12.b | |
||
hdmap14lem12.c | |
||
hdmap14lem12.e | |
||
hdmap14lem12.s | |
||
hdmap14lem12.k | |
||
hdmap14lem12.f | |
||
hdmap14lem12.p | |
||
hdmap14lem12.a | |
||
Assertion | hdmap14lem14 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | |
|
2 | hdmap14lem12.u | |
|
3 | hdmap14lem12.v | |
|
4 | hdmap14lem12.t | |
|
5 | hdmap14lem12.r | |
|
6 | hdmap14lem12.b | |
|
7 | hdmap14lem12.c | |
|
8 | hdmap14lem12.e | |
|
9 | hdmap14lem12.s | |
|
10 | hdmap14lem12.k | |
|
11 | hdmap14lem12.f | |
|
12 | hdmap14lem12.p | |
|
13 | hdmap14lem12.a | |
|
14 | eqid | |
|
15 | 1 2 3 14 10 | dvh1dim | |
16 | 10 | 3ad2ant1 | |
17 | 3simpc | |
|
18 | eldifsn | |
|
19 | 17 18 | sylibr | |
20 | 11 | 3ad2ant1 | |
21 | 1 2 3 4 14 5 6 7 8 12 13 9 16 19 20 | hdmap14lem7 | |
22 | simpl1 | |
|
23 | 22 10 | syl | |
24 | 22 11 | syl | |
25 | 19 | adantr | |
26 | simpr | |
|
27 | 1 2 3 4 5 6 7 8 9 23 24 12 13 14 25 26 | hdmap14lem13 | |
28 | 27 | reubidva | |
29 | 21 28 | mpbid | |
30 | 29 | rexlimdv3a | |
31 | 15 30 | mpd | |