Metamath Proof Explorer


Theorem hdmaprnlem6N

Description: Part of proof of part 12 in Baer p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H = LHyp K
hdmaprnlem1.u U = DVecH K W
hdmaprnlem1.v V = Base U
hdmaprnlem1.n N = LSpan U
hdmaprnlem1.c C = LCDual K W
hdmaprnlem1.l L = LSpan C
hdmaprnlem1.m M = mapd K W
hdmaprnlem1.s S = HDMap K W
hdmaprnlem1.k φ K HL W H
hdmaprnlem1.se φ s D Q
hdmaprnlem1.ve φ v V
hdmaprnlem1.e φ M N v = L s
hdmaprnlem1.ue φ u V
hdmaprnlem1.un φ ¬ u N v
hdmaprnlem1.d D = Base C
hdmaprnlem1.q Q = 0 C
hdmaprnlem1.o 0 ˙ = 0 U
hdmaprnlem1.a ˙ = + C
hdmaprnlem1.t2 φ t N v 0 ˙
hdmaprnlem1.p + ˙ = + U
hdmaprnlem1.pt φ L S u ˙ s = M N u + ˙ t
Assertion hdmaprnlem6N φ L S u ˙ s = L S u ˙ S t

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H = LHyp K
2 hdmaprnlem1.u U = DVecH K W
3 hdmaprnlem1.v V = Base U
4 hdmaprnlem1.n N = LSpan U
5 hdmaprnlem1.c C = LCDual K W
6 hdmaprnlem1.l L = LSpan C
7 hdmaprnlem1.m M = mapd K W
8 hdmaprnlem1.s S = HDMap K W
9 hdmaprnlem1.k φ K HL W H
10 hdmaprnlem1.se φ s D Q
11 hdmaprnlem1.ve φ v V
12 hdmaprnlem1.e φ M N v = L s
13 hdmaprnlem1.ue φ u V
14 hdmaprnlem1.un φ ¬ u N v
15 hdmaprnlem1.d D = Base C
16 hdmaprnlem1.q Q = 0 C
17 hdmaprnlem1.o 0 ˙ = 0 U
18 hdmaprnlem1.a ˙ = + C
19 hdmaprnlem1.t2 φ t N v 0 ˙
20 hdmaprnlem1.p + ˙ = + U
21 hdmaprnlem1.pt φ L S u ˙ s = M N u + ˙ t
22 1 2 9 dvhlmod φ U LMod
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φ t V
24 3 20 lmodvacl U LMod u V t V u + ˙ t V
25 22 13 23 24 syl3anc φ u + ˙ t V
26 1 2 3 4 5 6 7 8 9 25 hdmap10 φ M N u + ˙ t = L S u + ˙ t
27 1 2 3 20 5 18 8 9 13 23 hdmapadd φ S u + ˙ t = S u ˙ S t
28 27 sneqd φ S u + ˙ t = S u ˙ S t
29 28 fveq2d φ L S u + ˙ t = L S u ˙ S t
30 21 26 29 3eqtrd φ L S u ˙ s = L S u ˙ S t