Metamath Proof Explorer


Theorem hdmaprnlem6N

Description: Part of proof of part 12 in Baer p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem1.t2 φtNv0˙
hdmaprnlem1.p +˙=+U
hdmaprnlem1.pt φLSu˙s=MNu+˙t
Assertion hdmaprnlem6N φLSu˙s=LSu˙St

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem1.t2 φtNv0˙
20 hdmaprnlem1.p +˙=+U
21 hdmaprnlem1.pt φLSu˙s=MNu+˙t
22 1 2 9 dvhlmod φULMod
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φtV
24 3 20 lmodvacl ULModuVtVu+˙tV
25 22 13 23 24 syl3anc φu+˙tV
26 1 2 3 4 5 6 7 8 9 25 hdmap10 φMNu+˙t=LSu+˙t
27 1 2 3 20 5 18 8 9 13 23 hdmapadd φSu+˙t=Su˙St
28 27 sneqd φSu+˙t=Su˙St
29 28 fveq2d φLSu+˙t=LSu˙St
30 21 26 29 3eqtrd φLSu˙s=LSu˙St