Metamath Proof Explorer


Theorem hhshsslem1

Description: Lemma for hhsssh . (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsst.1 U=+norm
hhsst.2 W=+H×H×HnormH
hhssp3.3 WSubSpU
hhssp3.4 H
Assertion hhshsslem1 H=BaseSetW

Proof

Step Hyp Ref Expression
1 hhsst.1 U=+norm
2 hhsst.2 W=+H×H×HnormH
3 hhssp3.3 WSubSpU
4 hhssp3.4 H
5 eqid BaseSetW=BaseSetW
6 eqid +vW=+vW
7 5 6 bafval BaseSetW=ran+vW
8 1 hhnv UNrmCVec
9 eqid SubSpU=SubSpU
10 9 sspnv UNrmCVecWSubSpUWNrmCVec
11 8 3 10 mp2an WNrmCVec
12 6 nvgrp WNrmCVec+vWGrpOp
13 grporndm +vWGrpOpran+vW=domdom+vW
14 11 12 13 mp2b ran+vW=domdom+vW
15 2 fveq2i +vW=+v+H×H×HnormH
16 eqid +v+H×H×HnormH=+v+H×H×HnormH
17 16 vafval +v+H×H×HnormH=1st1st+H×H×HnormH
18 opex +H×H×HV
19 normf norm:
20 ax-hilex V
21 fex norm:VnormV
22 19 20 21 mp2an normV
23 22 resex normHV
24 18 23 op1st 1st+H×H×HnormH=+H×H×H
25 24 fveq2i 1st1st+H×H×HnormH=1st+H×H×H
26 hilablo +AbelOp
27 resexg +AbelOp+H×HV
28 26 27 ax-mp +H×HV
29 hvmulex V
30 29 resex ×HV
31 28 30 op1st 1st+H×H×H=+H×H
32 25 31 eqtri 1st1st+H×H×HnormH=+H×H
33 17 32 eqtri +v+H×H×HnormH=+H×H
34 15 33 eqtri +vW=+H×H
35 34 dmeqi dom+vW=dom+H×H
36 xpss12 HHH×H×
37 4 4 36 mp2an H×H×
38 ax-hfvadd +:×
39 38 fdmi dom+=×
40 37 39 sseqtrri H×Hdom+
41 ssdmres H×Hdom+dom+H×H=H×H
42 40 41 mpbi dom+H×H=H×H
43 35 42 eqtri dom+vW=H×H
44 43 dmeqi domdom+vW=domH×H
45 dmxpid domH×H=H
46 44 45 eqtri domdom+vW=H
47 14 46 eqtri ran+vW=H
48 7 47 eqtri BaseSetW=H
49 48 eqcomi H=BaseSetW