Metamath Proof Explorer


Theorem hlhil

Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Assertion hlhil W ℂHil W Hil

Proof

Step Hyp Ref Expression
1 hlphl W ℂHil W PreHil
2 eqid proj W = proj W
3 eqid ClSubSp W = ClSubSp W
4 2 3 pjcss W PreHil dom proj W ClSubSp W
5 1 4 syl W ℂHil dom proj W ClSubSp W
6 eqid Base W = Base W
7 eqid TopOpen W = TopOpen W
8 eqid LSubSp W = LSubSp W
9 6 7 8 3 cldcss2 W ℂHil ClSubSp W = LSubSp W Clsd TopOpen W
10 elin x LSubSp W Clsd TopOpen W x LSubSp W x Clsd TopOpen W
11 7 8 2 pjth2 W ℂHil x LSubSp W x Clsd TopOpen W x dom proj W
12 11 3expib W ℂHil x LSubSp W x Clsd TopOpen W x dom proj W
13 10 12 syl5bi W ℂHil x LSubSp W Clsd TopOpen W x dom proj W
14 13 ssrdv W ℂHil LSubSp W Clsd TopOpen W dom proj W
15 9 14 eqsstrd W ℂHil ClSubSp W dom proj W
16 5 15 eqssd W ℂHil dom proj W = ClSubSp W
17 2 3 ishil W Hil W PreHil dom proj W = ClSubSp W
18 1 16 17 sylanbrc W ℂHil W Hil