Metamath Proof Explorer


Theorem hlhil

Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Assertion hlhil WℂHilWHil

Proof

Step Hyp Ref Expression
1 hlphl WℂHilWPreHil
2 eqid projW=projW
3 eqid ClSubSpW=ClSubSpW
4 2 3 pjcss WPreHildomprojWClSubSpW
5 1 4 syl WℂHildomprojWClSubSpW
6 eqid BaseW=BaseW
7 eqid TopOpenW=TopOpenW
8 eqid LSubSpW=LSubSpW
9 6 7 8 3 cldcss2 WℂHilClSubSpW=LSubSpWClsdTopOpenW
10 elin xLSubSpWClsdTopOpenWxLSubSpWxClsdTopOpenW
11 7 8 2 pjth2 WℂHilxLSubSpWxClsdTopOpenWxdomprojW
12 11 3expib WℂHilxLSubSpWxClsdTopOpenWxdomprojW
13 10 12 biimtrid WℂHilxLSubSpWClsdTopOpenWxdomprojW
14 13 ssrdv WℂHilLSubSpWClsdTopOpenWdomprojW
15 9 14 eqsstrd WℂHilClSubSpWdomprojW
16 5 15 eqssd WℂHildomprojW=ClSubSpW
17 2 3 ishil WHilWPreHildomprojW=ClSubSpW
18 1 16 17 sylanbrc WℂHilWHil