Description: Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hlhil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlphl | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | pjcss | |
5 | 1 4 | syl | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 6 7 8 3 | cldcss2 | |
10 | elin | |
|
11 | 7 8 2 | pjth2 | |
12 | 11 | 3expib | |
13 | 10 12 | biimtrid | |
14 | 13 | ssrdv | |
15 | 9 14 | eqsstrd | |
16 | 5 15 | eqssd | |
17 | 2 3 | ishil | |
18 | 1 16 17 | sylanbrc | |