Metamath Proof Explorer


Theorem hlimcaui

Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimcaui FvAFCauchy

Proof

Step Hyp Ref Expression
1 eqid +norm=+norm
2 eqid IndMet+norm=IndMet+norm
3 eqid MetOpenIndMet+norm=MetOpenIndMet+norm
4 1 2 3 hhlm v=tMetOpenIndMet+norm
5 resss tMetOpenIndMet+normtMetOpenIndMet+norm
6 4 5 eqsstri vtMetOpenIndMet+norm
7 dmss vtMetOpenIndMet+normdomvdomtMetOpenIndMet+norm
8 6 7 ax-mp domvdomtMetOpenIndMet+norm
9 1 2 hhxmet IndMet+norm∞Met
10 3 lmcau IndMet+norm∞MetdomtMetOpenIndMet+normCauIndMet+norm
11 9 10 ax-mp domtMetOpenIndMet+normCauIndMet+norm
12 8 11 sstri domvCauIndMet+norm
13 4 dmeqi domv=domtMetOpenIndMet+norm
14 dmres domtMetOpenIndMet+norm=domtMetOpenIndMet+norm
15 13 14 eqtri domv=domtMetOpenIndMet+norm
16 inss1 domtMetOpenIndMet+norm
17 15 16 eqsstri domv
18 12 17 ssini domvCauIndMet+norm
19 1 2 hhcau Cauchy=CauIndMet+norm
20 18 19 sseqtrri domvCauchy
21 relres ReltMetOpenIndMet+norm
22 4 releqi RelvReltMetOpenIndMet+norm
23 21 22 mpbir Relv
24 23 releldmi FvAFdomv
25 20 24 sselid FvAFCauchy