Metamath Proof Explorer


Theorem hlimi

Description: Express the predicate: The limit of vector sequence F in a Hilbert space is A , i.e. F converges to A . This means that for any real x , no matter how small, there always exists an integer y such that the norm of any later vector in the sequence minus the limit is less than x . Definition of converge in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 AV
Assertion hlimi FvAF:Ax+yzynormFz-A<x

Proof

Step Hyp Ref Expression
1 hlim.1 AV
2 df-hlim v=fw|f:wx+yzynormfz-w<x
3 2 relopabiv Relv
4 3 brrelex1i FvAFV
5 nnex V
6 fex F:VFV
7 5 6 mpan2 F:FV
8 7 ad2antrr F:Ax+yzynormFz-A<xFV
9 feq1 f=Ff:F:
10 eleq1 w=AwA
11 9 10 bi2anan9 f=Fw=Af:wF:A
12 fveq1 f=Ffz=Fz
13 oveq12 fz=Fzw=Afz-w=Fz-A
14 12 13 sylan f=Fw=Afz-w=Fz-A
15 14 fveq2d f=Fw=Anormfz-w=normFz-A
16 15 breq1d f=Fw=Anormfz-w<xnormFz-A<x
17 16 rexralbidv f=Fw=Ayzynormfz-w<xyzynormFz-A<x
18 17 ralbidv f=Fw=Ax+yzynormfz-w<xx+yzynormFz-A<x
19 11 18 anbi12d f=Fw=Af:wx+yzynormfz-w<xF:Ax+yzynormFz-A<x
20 19 2 brabga FVAVFvAF:Ax+yzynormFz-A<x
21 1 20 mpan2 FVFvAF:Ax+yzynormFz-A<x
22 4 8 21 pm5.21nii FvAF:Ax+yzynormFz-A<x