Metamath Proof Explorer


Theorem hlrelat

Description: A Hilbert lattice is relatively atomic. Remark 2 of Kalmbach p. 149. ( chrelati analog.) (Contributed by NM, 4-Feb-2012)

Ref Expression
Hypotheses hlrelat5.b B=BaseK
hlrelat5.l ˙=K
hlrelat5.s <˙=<K
hlrelat5.j ˙=joinK
hlrelat5.a A=AtomsK
Assertion hlrelat KHLXBYBX<˙YpAX<˙X˙pX˙p˙Y

Proof

Step Hyp Ref Expression
1 hlrelat5.b B=BaseK
2 hlrelat5.l ˙=K
3 hlrelat5.s <˙=<K
4 hlrelat5.j ˙=joinK
5 hlrelat5.a A=AtomsK
6 1 2 3 5 hlrelat1 KHLXBYBX<˙YpA¬p˙Xp˙Y
7 6 imp KHLXBYBX<˙YpA¬p˙Xp˙Y
8 simpll1 KHLXBYBX<˙YpAKHL
9 8 hllatd KHLXBYBX<˙YpAKLat
10 simpll2 KHLXBYBX<˙YpAXB
11 1 5 atbase pApB
12 11 adantl KHLXBYBX<˙YpApB
13 1 2 3 4 latnle KLatXBpB¬p˙XX<˙X˙p
14 9 10 12 13 syl3anc KHLXBYBX<˙YpA¬p˙XX<˙X˙p
15 2 3 pltle KHLXBYBX<˙YX˙Y
16 15 imp KHLXBYBX<˙YX˙Y
17 16 adantr KHLXBYBX<˙YpAX˙Y
18 17 biantrurd KHLXBYBX<˙YpAp˙YX˙Yp˙Y
19 simpll3 KHLXBYBX<˙YpAYB
20 1 2 4 latjle12 KLatXBpBYBX˙Yp˙YX˙p˙Y
21 9 10 12 19 20 syl13anc KHLXBYBX<˙YpAX˙Yp˙YX˙p˙Y
22 18 21 bitrd KHLXBYBX<˙YpAp˙YX˙p˙Y
23 14 22 anbi12d KHLXBYBX<˙YpA¬p˙Xp˙YX<˙X˙pX˙p˙Y
24 23 rexbidva KHLXBYBX<˙YpA¬p˙Xp˙YpAX<˙X˙pX˙p˙Y
25 7 24 mpbid KHLXBYBX<˙YpAX<˙X˙pX˙p˙Y