Metamath Proof Explorer


Theorem hmeoimaf1o

Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmeoimaf1o.1 G = x J F x
Assertion hmeoimaf1o F J Homeo K G : J 1-1 onto K

Proof

Step Hyp Ref Expression
1 hmeoimaf1o.1 G = x J F x
2 hmeoima F J Homeo K x J F x K
3 hmeocn F J Homeo K F J Cn K
4 cnima F J Cn K y K F -1 y J
5 3 4 sylan F J Homeo K y K F -1 y J
6 eqid J = J
7 eqid K = K
8 6 7 hmeof1o F J Homeo K F : J 1-1 onto K
9 8 adantr F J Homeo K x J y K F : J 1-1 onto K
10 f1of1 F : J 1-1 onto K F : J 1-1 K
11 9 10 syl F J Homeo K x J y K F : J 1-1 K
12 elssuni x J x J
13 12 ad2antrl F J Homeo K x J y K x J
14 cnvimass F -1 y dom F
15 f1dm F : J 1-1 K dom F = J
16 11 15 syl F J Homeo K x J y K dom F = J
17 14 16 sseqtrid F J Homeo K x J y K F -1 y J
18 f1imaeq F : J 1-1 K x J F -1 y J F x = F F -1 y x = F -1 y
19 11 13 17 18 syl12anc F J Homeo K x J y K F x = F F -1 y x = F -1 y
20 f1ofo F : J 1-1 onto K F : J onto K
21 9 20 syl F J Homeo K x J y K F : J onto K
22 elssuni y K y K
23 22 ad2antll F J Homeo K x J y K y K
24 foimacnv F : J onto K y K F F -1 y = y
25 21 23 24 syl2anc F J Homeo K x J y K F F -1 y = y
26 25 eqeq2d F J Homeo K x J y K F x = F F -1 y F x = y
27 eqcom F x = y y = F x
28 26 27 bitrdi F J Homeo K x J y K F x = F F -1 y y = F x
29 19 28 bitr3d F J Homeo K x J y K x = F -1 y y = F x
30 1 2 5 29 f1o2d F J Homeo K G : J 1-1 onto K