Metamath Proof Explorer


Theorem hvmulcan2

Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmulcan2 ABCC0AC=BCA=B

Proof

Step Hyp Ref Expression
1 hvmulcl ACAC
2 1 3adant2 ABCAC
3 hvmulcl BCBC
4 3 3adant1 ABCBC
5 hvsubeq0 ACBCAC-BC=0AC=BC
6 2 4 5 syl2anc ABCAC-BC=0AC=BC
7 6 3adant3r ABCC0AC-BC=0AC=BC
8 hvsubdistr2 ABCABC=AC-BC
9 8 eqeq1d ABCABC=0AC-BC=0
10 subcl ABAB
11 hvmul0or ABCABC=0AB=0C=0
12 10 11 stoic3 ABCABC=0AB=0C=0
13 9 12 bitr3d ABCAC-BC=0AB=0C=0
14 13 3adant3r ABCC0AC-BC=0AB=0C=0
15 df-ne C0¬C=0
16 biorf ¬C=0AB=0C=0AB=0
17 orcom C=0AB=0AB=0C=0
18 16 17 bitrdi ¬C=0AB=0AB=0C=0
19 15 18 sylbi C0AB=0AB=0C=0
20 19 ad2antll BCC0AB=0AB=0C=0
21 20 3adant1 ABCC0AB=0AB=0C=0
22 subeq0 ABAB=0A=B
23 22 3adant3 ABCC0AB=0A=B
24 14 21 23 3bitr2d ABCC0AC-BC=0A=B
25 7 24 bitr3d ABCC0AC=BCA=B