| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcnval.1 |
|
| 2 |
|
itgcnval.2 |
|
| 3 |
|
iblmbf |
|
| 4 |
2 3
|
syl |
|
| 5 |
4 1
|
mbfmptcl |
|
| 6 |
5
|
renegd |
|
| 7 |
6
|
breq2d |
|
| 8 |
7 6
|
ifbieq1d |
|
| 9 |
8
|
mpteq2dva |
|
| 10 |
5
|
iblcn |
|
| 11 |
2 10
|
mpbid |
|
| 12 |
11
|
simpld |
|
| 13 |
5
|
recld |
|
| 14 |
13
|
iblre |
|
| 15 |
12 14
|
mpbid |
|
| 16 |
15
|
simprd |
|
| 17 |
9 16
|
eqeltrd |
|
| 18 |
6
|
negeqd |
|
| 19 |
13
|
recnd |
|
| 20 |
19
|
negnegd |
|
| 21 |
18 20
|
eqtrd |
|
| 22 |
21
|
breq2d |
|
| 23 |
22 21
|
ifbieq1d |
|
| 24 |
23
|
mpteq2dva |
|
| 25 |
15
|
simpld |
|
| 26 |
24 25
|
eqeltrd |
|
| 27 |
5
|
negcld |
|
| 28 |
27
|
recld |
|
| 29 |
28
|
iblre |
|
| 30 |
17 26 29
|
mpbir2and |
|
| 31 |
5
|
imnegd |
|
| 32 |
31
|
breq2d |
|
| 33 |
32 31
|
ifbieq1d |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
11
|
simprd |
|
| 36 |
5
|
imcld |
|
| 37 |
36
|
iblre |
|
| 38 |
35 37
|
mpbid |
|
| 39 |
38
|
simprd |
|
| 40 |
34 39
|
eqeltrd |
|
| 41 |
31
|
negeqd |
|
| 42 |
36
|
recnd |
|
| 43 |
42
|
negnegd |
|
| 44 |
41 43
|
eqtrd |
|
| 45 |
44
|
breq2d |
|
| 46 |
45 44
|
ifbieq1d |
|
| 47 |
46
|
mpteq2dva |
|
| 48 |
38
|
simpld |
|
| 49 |
47 48
|
eqeltrd |
|
| 50 |
27
|
imcld |
|
| 51 |
50
|
iblre |
|
| 52 |
40 49 51
|
mpbir2and |
|
| 53 |
27
|
iblcn |
|
| 54 |
30 52 53
|
mpbir2and |
|