Metamath Proof Explorer


Theorem iblneg

Description: The negative of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φ x A B V
itgcnval.2 φ x A B 𝐿 1
Assertion iblneg φ x A B 𝐿 1

Proof

Step Hyp Ref Expression
1 itgcnval.1 φ x A B V
2 itgcnval.2 φ x A B 𝐿 1
3 iblmbf x A B 𝐿 1 x A B MblFn
4 2 3 syl φ x A B MblFn
5 4 1 mbfmptcl φ x A B
6 5 renegd φ x A B = B
7 6 breq2d φ x A 0 B 0 B
8 7 6 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
9 8 mpteq2dva φ x A if 0 B B 0 = x A if 0 B B 0
10 5 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
11 2 10 mpbid φ x A B 𝐿 1 x A B 𝐿 1
12 11 simpld φ x A B 𝐿 1
13 5 recld φ x A B
14 13 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
15 12 14 mpbid φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
16 15 simprd φ x A if 0 B B 0 𝐿 1
17 9 16 eqeltrd φ x A if 0 B B 0 𝐿 1
18 6 negeqd φ x A B = B
19 13 recnd φ x A B
20 19 negnegd φ x A B = B
21 18 20 eqtrd φ x A B = B
22 21 breq2d φ x A 0 B 0 B
23 22 21 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
24 23 mpteq2dva φ x A if 0 B B 0 = x A if 0 B B 0
25 15 simpld φ x A if 0 B B 0 𝐿 1
26 24 25 eqeltrd φ x A if 0 B B 0 𝐿 1
27 5 negcld φ x A B
28 27 recld φ x A B
29 28 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
30 17 26 29 mpbir2and φ x A B 𝐿 1
31 5 imnegd φ x A B = B
32 31 breq2d φ x A 0 B 0 B
33 32 31 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
34 33 mpteq2dva φ x A if 0 B B 0 = x A if 0 B B 0
35 11 simprd φ x A B 𝐿 1
36 5 imcld φ x A B
37 36 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
38 35 37 mpbid φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
39 38 simprd φ x A if 0 B B 0 𝐿 1
40 34 39 eqeltrd φ x A if 0 B B 0 𝐿 1
41 31 negeqd φ x A B = B
42 36 recnd φ x A B
43 42 negnegd φ x A B = B
44 41 43 eqtrd φ x A B = B
45 44 breq2d φ x A 0 B 0 B
46 45 44 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
47 46 mpteq2dva φ x A if 0 B B 0 = x A if 0 B B 0
48 38 simpld φ x A if 0 B B 0 𝐿 1
49 47 48 eqeltrd φ x A if 0 B B 0 𝐿 1
50 27 imcld φ x A B
51 50 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
52 40 49 51 mpbir2and φ x A B 𝐿 1
53 27 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
54 30 52 53 mpbir2and φ x A B 𝐿 1