Metamath Proof Explorer


Theorem iblre

Description: Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypothesis iblrelem.1 φxAB
Assertion iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1

Proof

Step Hyp Ref Expression
1 iblrelem.1 φxAB
2 1 mbfposb φxABMblFnxAif0BB0MblFnxAif0BB0MblFn
3 ifan ifxA0BB0=ifxAif0BB00
4 3 mpteq2i xifxA0BB0=xifxAif0BB00
5 4 fveq2i 2xifxA0BB0=2xifxAif0BB00
6 5 eleq1i 2xifxA0BB02xifxAif0BB00
7 ifan ifxA0BB0=ifxAif0BB00
8 7 mpteq2i xifxA0BB0=xifxAif0BB00
9 8 fveq2i 2xifxA0BB0=2xifxAif0BB00
10 9 eleq1i 2xifxA0BB02xifxAif0BB00
11 6 10 anbi12i 2xifxA0BB02xifxA0BB02xifxAif0BB002xifxAif0BB00
12 11 a1i φ2xifxA0BB02xifxA0BB02xifxAif0BB002xifxAif0BB00
13 2 12 anbi12d φxABMblFn2xifxA0BB02xifxA0BB0xAif0BB0MblFnxAif0BB0MblFn2xifxAif0BB002xifxAif0BB00
14 3anass xABMblFn2xifxA0BB02xifxA0BB0xABMblFn2xifxA0BB02xifxA0BB0
15 an4 xAif0BB0MblFn2xifxAif0BB00xAif0BB0MblFn2xifxAif0BB00xAif0BB0MblFnxAif0BB0MblFn2xifxAif0BB002xifxAif0BB00
16 13 14 15 3bitr4g φxABMblFn2xifxA0BB02xifxA0BB0xAif0BB0MblFn2xifxAif0BB00xAif0BB0MblFn2xifxAif0BB00
17 1 iblrelem φxAB𝐿1xABMblFn2xifxA0BB02xifxA0BB0
18 0re 0
19 ifcl B0if0BB0
20 1 18 19 sylancl φxAif0BB0
21 max1 0B0if0BB0
22 18 1 21 sylancr φxA0if0BB0
23 20 22 iblpos φxAif0BB0𝐿1xAif0BB0MblFn2xifxAif0BB00
24 1 renegcld φxAB
25 ifcl B0if0BB0
26 24 18 25 sylancl φxAif0BB0
27 max1 0B0if0BB0
28 18 24 27 sylancr φxA0if0BB0
29 26 28 iblpos φxAif0BB0𝐿1xAif0BB0MblFn2xifxAif0BB00
30 23 29 anbi12d φxAif0BB0𝐿1xAif0BB0𝐿1xAif0BB0MblFn2xifxAif0BB00xAif0BB0MblFn2xifxAif0BB00
31 16 17 30 3bitr4d φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1