Metamath Proof Explorer


Theorem iccpartgel

Description: If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartgel φi0MP0Pi

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 1 nnnn0d φM0
4 elnn0uz M0M0
5 3 4 sylib φM0
6 fzpred M00M=00+1M
7 5 6 syl φ0M=00+1M
8 7 eleq2d φi0Mi00+1M
9 elun i00+1Mi0i0+1M
10 9 a1i φi00+1Mi0i0+1M
11 velsn i0i=0
12 11 a1i φi0i=0
13 0p1e1 0+1=1
14 13 a1i φ0+1=1
15 14 oveq1d φ0+1M=1M
16 15 eleq2d φi0+1Mi1M
17 12 16 orbi12d φi0i0+1Mi=0i1M
18 8 10 17 3bitrd φi0Mi=0i1M
19 0elfz M000M
20 3 19 syl φ00M
21 1 2 20 iccpartxr φP0*
22 21 xrleidd φP0P0
23 fveq2 i=0Pi=P0
24 23 breq2d i=0P0PiP0P0
25 22 24 imbitrrid i=0φP0Pi
26 21 adantr φi1MP0*
27 1 adantr φi1MM
28 2 adantr φi1MPRePartM
29 1nn0 10
30 29 a1i φ10
31 elnn0uz 1010
32 30 31 sylib φ10
33 fzss1 101M0M
34 32 33 syl φ1M0M
35 34 sselda φi1Mi0M
36 27 28 35 iccpartxr φi1MPi*
37 1 2 iccpartgtl φk1MP0<Pk
38 fveq2 k=iPk=Pi
39 38 breq2d k=iP0<PkP0<Pi
40 39 rspccv k1MP0<Pki1MP0<Pi
41 37 40 syl φi1MP0<Pi
42 41 imp φi1MP0<Pi
43 26 36 42 xrltled φi1MP0Pi
44 43 expcom i1MφP0Pi
45 25 44 jaoi i=0i1MφP0Pi
46 45 com12 φi=0i1MP0Pi
47 18 46 sylbid φi0MP0Pi
48 47 ralrimiv φi0MP0Pi