Metamath Proof Explorer


Theorem iccshftl

Description: Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses iccshftl.1 AR=C
iccshftl.2 BR=D
Assertion iccshftl ABXRXABXRCD

Proof

Step Hyp Ref Expression
1 iccshftl.1 AR=C
2 iccshftl.2 BR=D
3 simpl XRX
4 resubcl XRXR
5 3 4 2thd XRXXR
6 5 adantl ABXRXXR
7 lesub1 AXRAXARXR
8 7 3expb AXRAXARXR
9 8 adantlr ABXRAXARXR
10 1 breq1i ARXRCXR
11 9 10 bitrdi ABXRAXCXR
12 lesub1 XBRXBXRBR
13 12 3expb XBRXBXRBR
14 13 an12s BXRXBXRBR
15 14 adantll ABXRXBXRBR
16 2 breq2i XRBRXRD
17 15 16 bitrdi ABXRXBXRD
18 6 11 17 3anbi123d ABXRXAXXBXRCXRXRD
19 elicc2 ABXABXAXXB
20 19 adantr ABXRXABXAXXB
21 resubcl ARAR
22 1 21 eqeltrrid ARC
23 resubcl BRBR
24 2 23 eqeltrrid BRD
25 elicc2 CDXRCDXRCXRXRD
26 22 24 25 syl2an ARBRXRCDXRCXRXRD
27 26 anandirs ABRXRCDXRCXRXRD
28 27 adantrl ABXRXRCDXRCXRXRD
29 18 20 28 3bitr4d ABXRXABXRCD