Metamath Proof Explorer


Theorem icorempo

Description: Closed-below, open-above intervals of reals. (Contributed by ML, 26-Jul-2020)

Ref Expression
Hypothesis icorempo.1 F = . 2
Assertion icorempo F = x , y z | x z z < y

Proof

Step Hyp Ref Expression
1 icorempo.1 F = . 2
2 df-ico . = x * , y * z * | x z z < y
3 2 reseq1i . 2 = x * , y * z * | x z z < y 2
4 ressxr *
5 resmpo * * x * , y * z * | x z z < y 2 = x , y z * | x z z < y
6 4 4 5 mp2an x * , y * z * | x z z < y 2 = x , y z * | x z z < y
7 3 6 eqtri . 2 = x , y z * | x z z < y
8 nfv z x y
9 nfrab1 _ z z * | x z z < y
10 nfrab1 _ z z | x z z < y
11 rabid z z * | x z z < y z * x z z < y
12 rexr x x *
13 nltmnf x * ¬ x < −∞
14 12 13 syl x ¬ x < −∞
15 renemnf x x −∞
16 15 neneqd x ¬ x = −∞
17 14 16 jca x ¬ x < −∞ ¬ x = −∞
18 pm4.56 ¬ x < −∞ ¬ x = −∞ ¬ x < −∞ x = −∞
19 17 18 sylib x ¬ x < −∞ x = −∞
20 mnfxr −∞ *
21 xrleloe x * −∞ * x −∞ x < −∞ x = −∞
22 12 20 21 sylancl x x −∞ x < −∞ x = −∞
23 19 22 mtbird x ¬ x −∞
24 breq2 z = −∞ x z x −∞
25 24 notbid z = −∞ ¬ x z ¬ x −∞
26 23 25 syl5ibrcom x z = −∞ ¬ x z
27 26 con2d x x z ¬ z = −∞
28 rexr y y *
29 pnfnlt y * ¬ +∞ < y
30 breq1 z = +∞ z < y +∞ < y
31 30 notbid z = +∞ ¬ z < y ¬ +∞ < y
32 29 31 syl5ibrcom y * z = +∞ ¬ z < y
33 32 con2d y * z < y ¬ z = +∞
34 28 33 syl y z < y ¬ z = +∞
35 27 34 im2anan9 x y x z z < y ¬ z = −∞ ¬ z = +∞
36 35 anim2d x y z * x z z < y z * ¬ z = −∞ ¬ z = +∞
37 renepnf z z +∞
38 37 neneqd z ¬ z = +∞
39 38 pm4.71i z z ¬ z = +∞
40 xrnemnf z * z −∞ z z = +∞
41 40 anbi1i z * z −∞ ¬ z = +∞ z z = +∞ ¬ z = +∞
42 df-ne z −∞ ¬ z = −∞
43 42 anbi2i z * z −∞ z * ¬ z = −∞
44 43 anbi1i z * z −∞ ¬ z = +∞ z * ¬ z = −∞ ¬ z = +∞
45 pm5.61 z z = +∞ ¬ z = +∞ z ¬ z = +∞
46 41 44 45 3bitr3i z * ¬ z = −∞ ¬ z = +∞ z ¬ z = +∞
47 anass z * ¬ z = −∞ ¬ z = +∞ z * ¬ z = −∞ ¬ z = +∞
48 39 46 47 3bitr2ri z * ¬ z = −∞ ¬ z = +∞ z
49 36 48 syl6ib x y z * x z z < y z
50 11 49 syl5bi x y z z * | x z z < y z
51 11 simprbi z z * | x z z < y x z z < y
52 51 a1i x y z z * | x z z < y x z z < y
53 50 52 jcad x y z z * | x z z < y z x z z < y
54 rabid z z | x z z < y z x z z < y
55 53 54 syl6ibr x y z z * | x z z < y z z | x z z < y
56 rabss2 * z | x z z < y z * | x z z < y
57 4 56 ax-mp z | x z z < y z * | x z z < y
58 57 sseli z z | x z z < y z z * | x z z < y
59 55 58 impbid1 x y z z * | x z z < y z z | x z z < y
60 8 9 10 59 eqrd x y z * | x z z < y = z | x z z < y
61 60 mpoeq3ia x , y z * | x z z < y = x , y z | x z z < y
62 1 7 61 3eqtri F = x , y z | x z z < y