Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | idffth.i | |
|
Assertion | idffth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idffth.i | |
|
2 | relfunc | |
|
3 | 1 | idfucl | |
4 | 1st2nd | |
|
5 | 2 3 4 | sylancr | |
6 | 5 3 | eqeltrrd | |
7 | df-br | |
|
8 | 6 7 | sylibr | |
9 | f1oi | |
|
10 | eqid | |
|
11 | simpl | |
|
12 | eqid | |
|
13 | simprl | |
|
14 | simprr | |
|
15 | 1 10 11 12 13 14 | idfu2nd | |
16 | eqidd | |
|
17 | 1 10 11 13 | idfu1 | |
18 | 1 10 11 14 | idfu1 | |
19 | 17 18 | oveq12d | |
20 | 15 16 19 | f1oeq123d | |
21 | 9 20 | mpbiri | |
22 | 21 | ralrimivva | |
23 | 10 12 12 | isffth2 | |
24 | 8 22 23 | sylanbrc | |
25 | df-br | |
|
26 | 24 25 | sylib | |
27 | 5 26 | eqeltrd | |