Metamath Proof Explorer


Theorem idffth

Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypothesis idffth.i I=idfuncC
Assertion idffth CCatICFullCCFaithC

Proof

Step Hyp Ref Expression
1 idffth.i I=idfuncC
2 relfunc RelCFuncC
3 1 idfucl CCatICFuncC
4 1st2nd RelCFuncCICFuncCI=1stI2ndI
5 2 3 4 sylancr CCatI=1stI2ndI
6 5 3 eqeltrrd CCat1stI2ndICFuncC
7 df-br 1stICFuncC2ndI1stI2ndICFuncC
8 6 7 sylibr CCat1stICFuncC2ndI
9 f1oi IxHomCy:xHomCy1-1 ontoxHomCy
10 eqid BaseC=BaseC
11 simpl CCatxBaseCyBaseCCCat
12 eqid HomC=HomC
13 simprl CCatxBaseCyBaseCxBaseC
14 simprr CCatxBaseCyBaseCyBaseC
15 1 10 11 12 13 14 idfu2nd CCatxBaseCyBaseCx2ndIy=IxHomCy
16 eqidd CCatxBaseCyBaseCxHomCy=xHomCy
17 1 10 11 13 idfu1 CCatxBaseCyBaseC1stIx=x
18 1 10 11 14 idfu1 CCatxBaseCyBaseC1stIy=y
19 17 18 oveq12d CCatxBaseCyBaseC1stIxHomC1stIy=xHomCy
20 15 16 19 f1oeq123d CCatxBaseCyBaseCx2ndIy:xHomCy1-1 onto1stIxHomC1stIyIxHomCy:xHomCy1-1 ontoxHomCy
21 9 20 mpbiri CCatxBaseCyBaseCx2ndIy:xHomCy1-1 onto1stIxHomC1stIy
22 21 ralrimivva CCatxBaseCyBaseCx2ndIy:xHomCy1-1 onto1stIxHomC1stIy
23 10 12 12 isffth2 1stICFullCCFaithC2ndI1stICFuncC2ndIxBaseCyBaseCx2ndIy:xHomCy1-1 onto1stIxHomC1stIy
24 8 22 23 sylanbrc CCat1stICFullCCFaithC2ndI
25 df-br 1stICFullCCFaithC2ndI1stI2ndICFullCCFaithC
26 24 25 sylib CCat1stI2ndICFullCCFaithC
27 5 26 eqeltrd CCatICFullCCFaithC