Metamath Proof Explorer


Theorem idlsrg0g

Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses idlsrg0g.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
idlsrg0g.2 0 ˙ = 0 R
Assertion idlsrg0g R Ring 0 ˙ = 0 S

Proof

Step Hyp Ref Expression
1 idlsrg0g.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 idlsrg0g.2 0 ˙ = 0 R
3 eqid Base S = Base S
4 eqid 0 S = 0 S
5 eqid + S = + S
6 eqid LIdeal R = LIdeal R
7 6 2 lidl0 R Ring 0 ˙ LIdeal R
8 1 6 idlsrgbas R Ring LIdeal R = Base S
9 7 8 eleqtrd R Ring 0 ˙ Base S
10 eqid LSSum R = LSSum R
11 1 10 idlsrgplusg R Ring LSSum R = + S
12 11 adantr R Ring i Base S LSSum R = + S
13 12 oveqd R Ring i Base S 0 ˙ LSSum R i = 0 ˙ + S i
14 simpr R Ring i Base S i Base S
15 8 adantr R Ring i Base S LIdeal R = Base S
16 14 15 eleqtrrd R Ring i Base S i LIdeal R
17 6 lidlsubg R Ring i LIdeal R i SubGrp R
18 16 17 syldan R Ring i Base S i SubGrp R
19 2 10 lsm02 i SubGrp R 0 ˙ LSSum R i = i
20 18 19 syl R Ring i Base S 0 ˙ LSSum R i = i
21 13 20 eqtr3d R Ring i Base S 0 ˙ + S i = i
22 12 oveqd R Ring i Base S i LSSum R 0 ˙ = i + S 0 ˙
23 2 10 lsm01 i SubGrp R i LSSum R 0 ˙ = i
24 18 23 syl R Ring i Base S i LSSum R 0 ˙ = i
25 22 24 eqtr3d R Ring i Base S i + S 0 ˙ = i
26 3 4 5 9 21 25 ismgmid2 R Ring 0 ˙ = 0 S