Metamath Proof Explorer


Theorem idlsrgcmnd

Description: The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypothesis idlsrgmnd.1 No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
Assertion idlsrgcmnd RRingSCMnd

Proof

Step Hyp Ref Expression
1 idlsrgmnd.1 Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |-
2 eqid LIdealR=LIdealR
3 1 2 idlsrgbas RRingLIdealR=BaseS
4 eqid LSSumR=LSSumR
5 1 4 idlsrgplusg RRingLSSumR=+S
6 1 idlsrgmnd RRingSMnd
7 ringabl RRingRAbel
8 7 3ad2ant1 RRingiLIdealRjLIdealRRAbel
9 2 lidlsubg RRingiLIdealRiSubGrpR
10 9 3adant3 RRingiLIdealRjLIdealRiSubGrpR
11 2 lidlsubg RRingjLIdealRjSubGrpR
12 11 3adant2 RRingiLIdealRjLIdealRjSubGrpR
13 4 lsmcom RAbeliSubGrpRjSubGrpRiLSSumRj=jLSSumRi
14 8 10 12 13 syl3anc RRingiLIdealRjLIdealRiLSSumRj=jLSSumRi
15 3 5 6 14 iscmnd RRingSCMnd