Description: The ideals of a ring form a commutative monoid. (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | idlsrgmnd.1 | No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
Assertion | idlsrgcmnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmnd.1 | Could not format S = ( IDLsrg ` R ) : No typesetting found for |- S = ( IDLsrg ` R ) with typecode |- | |
2 | eqid | |
|
3 | 1 2 | idlsrgbas | |
4 | eqid | |
|
5 | 1 4 | idlsrgplusg | |
6 | 1 | idlsrgmnd | |
7 | ringabl | |
|
8 | 7 | 3ad2ant1 | |
9 | 2 | lidlsubg | |
10 | 9 | 3adant3 | |
11 | 2 | lidlsubg | |
12 | 11 | 3adant2 | |
13 | 4 | lsmcom | |
14 | 8 10 12 13 | syl3anc | |
15 | 3 5 6 14 | iscmnd | |