| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlsrgval.1 |
|
| 2 |
|
idlsrgval.2 |
|
| 3 |
|
idlsrgval.3 |
|
| 4 |
|
idlsrgval.4 |
|
| 5 |
|
elex |
|
| 6 |
|
fvexd |
|
| 7 |
|
simpr |
|
| 8 |
|
simpl |
|
| 9 |
8
|
fveq2d |
|
| 10 |
7 9
|
eqtrd |
|
| 11 |
10 1
|
eqtr4di |
|
| 12 |
11
|
opeq2d |
|
| 13 |
8
|
fveq2d |
|
| 14 |
13 2
|
eqtr4di |
|
| 15 |
14
|
opeq2d |
|
| 16 |
8
|
fveq2d |
|
| 17 |
8
|
fveq2d |
|
| 18 |
17 3
|
eqtr4di |
|
| 19 |
18
|
fveq2d |
|
| 20 |
19 4
|
eqtr4di |
|
| 21 |
20
|
oveqd |
|
| 22 |
16 21
|
fveq12d |
|
| 23 |
11 11 22
|
mpoeq123dv |
|
| 24 |
23
|
opeq2d |
|
| 25 |
12 15 24
|
tpeq123d |
|
| 26 |
11
|
rabeqdv |
|
| 27 |
11 26
|
mpteq12dv |
|
| 28 |
27
|
rneqd |
|
| 29 |
28
|
opeq2d |
|
| 30 |
11
|
sseq2d |
|
| 31 |
30
|
anbi1d |
|
| 32 |
31
|
opabbidv |
|
| 33 |
32
|
opeq2d |
|
| 34 |
29 33
|
preq12d |
|
| 35 |
25 34
|
uneq12d |
|
| 36 |
6 35
|
csbied |
|
| 37 |
|
df-idlsrg |
|
| 38 |
|
tpex |
|
| 39 |
|
prex |
|
| 40 |
38 39
|
unex |
|
| 41 |
36 37 40
|
fvmpt |
|
| 42 |
5 41
|
syl |
|