Metamath Proof Explorer


Theorem imasetpreimafvbijlemf1

Description: Lemma for imasetpreimafvbij : the mapping H is an injective function into the range of function F . (Contributed by AV, 9-Mar-2024) (Revised by AV, 22-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinj.p P = z | x A z = F -1 F x
fundcmpsurinj.h H = p P F p
Assertion imasetpreimafvbijlemf1 F Fn A H : P 1-1 F A

Proof

Step Hyp Ref Expression
1 fundcmpsurinj.p P = z | x A z = F -1 F x
2 fundcmpsurinj.h H = p P F p
3 1 2 imasetpreimafvbijlemf F Fn A H : P F A
4 1 2 imasetpreimafvbijlemfv1 F Fn A s P b s H s = F b
5 1 2 imasetpreimafvbijlemfv1 F Fn A r P a r H r = F a
6 4 5 anim12dan F Fn A s P r P b s H s = F b a r H r = F a
7 eqeq12 H s = F b H r = F a H s = H r F b = F a
8 7 ancoms H r = F a H s = F b H s = H r F b = F a
9 8 adantl F Fn A s P r P b s a r H r = F a H s = F b H s = H r F b = F a
10 simplll F Fn A s P r P b s a r F Fn A
11 simpllr F Fn A s P r P b s a r s P r P
12 simpr F Fn A s P r P b s b s
13 12 anim1i F Fn A s P r P b s a r b s a r
14 1 elsetpreimafveq F Fn A s P r P b s a r F b = F a s = r
15 10 11 13 14 syl3anc F Fn A s P r P b s a r F b = F a s = r
16 15 adantr F Fn A s P r P b s a r H r = F a H s = F b F b = F a s = r
17 9 16 sylbid F Fn A s P r P b s a r H r = F a H s = F b H s = H r s = r
18 17 exp32 F Fn A s P r P b s a r H r = F a H s = F b H s = H r s = r
19 18 rexlimdva F Fn A s P r P b s a r H r = F a H s = F b H s = H r s = r
20 19 com23 F Fn A s P r P b s H s = F b a r H r = F a H s = H r s = r
21 20 rexlimdva F Fn A s P r P b s H s = F b a r H r = F a H s = H r s = r
22 21 impd F Fn A s P r P b s H s = F b a r H r = F a H s = H r s = r
23 6 22 mpd F Fn A s P r P H s = H r s = r
24 23 ralrimivva F Fn A s P r P H s = H r s = r
25 dff13 H : P 1-1 F A H : P F A s P r P H s = H r s = r
26 3 24 25 sylanbrc F Fn A H : P 1-1 F A