Metamath Proof Explorer


Theorem imasncls

Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of BourbakiTop1 p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Hypotheses imasnopn.1 X=J
imasnopn.2 Y=K
Assertion imasncls JTopKTopRX×YAXclsKRAclsJ×tKRA

Proof

Step Hyp Ref Expression
1 imasnopn.1 X=J
2 imasnopn.2 Y=K
3 2 toptopon KTopKTopOnY
4 3 biimpi KTopKTopOnY
5 4 ad2antlr JTopKTopRX×YAXKTopOnY
6 1 toptopon JTopJTopOnX
7 6 biimpi JTopJTopOnX
8 7 ad2antrr JTopKTopRX×YAXJTopOnX
9 simprr JTopKTopRX×YAXAX
10 5 8 9 cnmptc JTopKTopRX×YAXyYAKCnJ
11 5 cnmptid JTopKTopRX×YAXyYyKCnK
12 5 10 11 cnmpt1t JTopKTopRX×YAXyYAyKCnJ×tK
13 simprl JTopKTopRX×YAXRX×Y
14 1 2 txuni JTopKTopX×Y=J×tK
15 14 adantr JTopKTopRX×YAXX×Y=J×tK
16 13 15 sseqtrd JTopKTopRX×YAXRJ×tK
17 eqid J×tK=J×tK
18 17 cncls2i yYAyKCnJ×tKRJ×tKclsKyYAy-1RyYAy-1clsJ×tKR
19 12 16 18 syl2anc JTopKTopRX×YAXclsKyYAy-1RyYAy-1clsJ×tKR
20 nfv yJTopKTopRX×YAX
21 nfcv _yRA
22 nfrab1 _yyY|AyR
23 imass1 RX×YRAX×YA
24 13 23 syl JTopKTopRX×YAXRAX×YA
25 xpimasn AXX×YA=Y
26 25 ad2antll JTopKTopRX×YAXX×YA=Y
27 24 26 sseqtrd JTopKTopRX×YAXRAY
28 27 sseld JTopKTopRX×YAXyRAyY
29 28 pm4.71rd JTopKTopRX×YAXyRAyYyRA
30 elimasng AXyVyRAAyR
31 30 elvd AXyRAAyR
32 31 ad2antll JTopKTopRX×YAXyRAAyR
33 32 anbi2d JTopKTopRX×YAXyYyRAyYAyR
34 29 33 bitrd JTopKTopRX×YAXyRAyYAyR
35 rabid yyY|AyRyYAyR
36 34 35 bitr4di JTopKTopRX×YAXyRAyyY|AyR
37 20 21 22 36 eqrd JTopKTopRX×YAXRA=yY|AyR
38 eqid yYAy=yYAy
39 38 mptpreima yYAy-1R=yY|AyR
40 37 39 eqtr4di JTopKTopRX×YAXRA=yYAy-1R
41 40 fveq2d JTopKTopRX×YAXclsKRA=clsKyYAy-1R
42 nfcv _yclsJ×tKRA
43 nfrab1 _yyY|AyclsJ×tKR
44 txtop JTopKTopJ×tKTop
45 44 adantr JTopKTopRX×YAXJ×tKTop
46 17 clsss3 J×tKTopRJ×tKclsJ×tKRJ×tK
47 45 16 46 syl2anc JTopKTopRX×YAXclsJ×tKRJ×tK
48 47 15 sseqtrrd JTopKTopRX×YAXclsJ×tKRX×Y
49 imass1 clsJ×tKRX×YclsJ×tKRAX×YA
50 48 49 syl JTopKTopRX×YAXclsJ×tKRAX×YA
51 50 26 sseqtrd JTopKTopRX×YAXclsJ×tKRAY
52 51 sseld JTopKTopRX×YAXyclsJ×tKRAyY
53 52 pm4.71rd JTopKTopRX×YAXyclsJ×tKRAyYyclsJ×tKRA
54 elimasng AXyVyclsJ×tKRAAyclsJ×tKR
55 54 elvd AXyclsJ×tKRAAyclsJ×tKR
56 55 ad2antll JTopKTopRX×YAXyclsJ×tKRAAyclsJ×tKR
57 56 anbi2d JTopKTopRX×YAXyYyclsJ×tKRAyYAyclsJ×tKR
58 53 57 bitrd JTopKTopRX×YAXyclsJ×tKRAyYAyclsJ×tKR
59 rabid yyY|AyclsJ×tKRyYAyclsJ×tKR
60 58 59 bitr4di JTopKTopRX×YAXyclsJ×tKRAyyY|AyclsJ×tKR
61 20 42 43 60 eqrd JTopKTopRX×YAXclsJ×tKRA=yY|AyclsJ×tKR
62 38 mptpreima yYAy-1clsJ×tKR=yY|AyclsJ×tKR
63 61 62 eqtr4di JTopKTopRX×YAXclsJ×tKRA=yYAy-1clsJ×tKR
64 19 41 63 3sstr4d JTopKTopRX×YAXclsKRAclsJ×tKRA