Description: If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of BourbakiTop1 p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imasnopn.1 | |
|
Assertion | imasnopn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasnopn.1 | |
|
2 | nfv | |
|
3 | nfcv | |
|
4 | nfrab1 | |
|
5 | txtop | |
|
6 | 5 | adantr | |
7 | simprl | |
|
8 | eqid | |
|
9 | 8 | eltopss | |
10 | 6 7 9 | syl2anc | |
11 | eqid | |
|
12 | 1 11 | txuni | |
13 | 12 | adantr | |
14 | 10 13 | sseqtrrd | |
15 | imass1 | |
|
16 | 14 15 | syl | |
17 | xpimasn | |
|
18 | 17 | ad2antll | |
19 | 16 18 | sseqtrd | |
20 | 19 | sseld | |
21 | 20 | pm4.71rd | |
22 | elimasng | |
|
23 | 22 | elvd | |
24 | 23 | ad2antll | |
25 | 24 | anbi2d | |
26 | 21 25 | bitrd | |
27 | rabid | |
|
28 | 26 27 | bitr4di | |
29 | 2 3 4 28 | eqrd | |
30 | eqid | |
|
31 | 30 | mptpreima | |
32 | 29 31 | eqtr4di | |
33 | 11 | toptopon | |
34 | 33 | biimpi | |
35 | 34 | ad2antlr | |
36 | 1 | toptopon | |
37 | 36 | biimpi | |
38 | 37 | ad2antrr | |
39 | simprr | |
|
40 | 35 38 39 | cnmptc | |
41 | 35 | cnmptid | |
42 | 35 40 41 | cnmpt1t | |
43 | cnima | |
|
44 | 42 7 43 | syl2anc | |
45 | 32 44 | eqeltrd | |