Metamath Proof Explorer


Theorem inf3lem2

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G = y V w x | w x y
inf3lem.2 F = rec G ω
inf3lem.3 A V
inf3lem.4 B V
Assertion inf3lem2 x x x A ω F A x

Proof

Step Hyp Ref Expression
1 inf3lem.1 G = y V w x | w x y
2 inf3lem.2 F = rec G ω
3 inf3lem.3 A V
4 inf3lem.4 B V
5 fveq2 v = F v = F
6 5 neeq1d v = F v x F x
7 6 imbi2d v = x x x F v x x x x F x
8 fveq2 v = u F v = F u
9 8 neeq1d v = u F v x F u x
10 9 imbi2d v = u x x x F v x x x x F u x
11 fveq2 v = suc u F v = F suc u
12 11 neeq1d v = suc u F v x F suc u x
13 12 imbi2d v = suc u x x x F v x x x x F suc u x
14 fveq2 v = A F v = F A
15 14 neeq1d v = A F v x F A x
16 15 imbi2d v = A x x x F v x x x x F A x
17 1 2 3 4 inf3lemb F =
18 17 eqeq1i F = x = x
19 eqcom = x x =
20 18 19 sylbb F = x x =
21 20 necon3i x F x
22 21 adantr x x x F x
23 vex u V
24 1 2 23 4 inf3lemd u ω F u x
25 df-pss F u x F u x F u x
26 pssnel F u x v v x ¬ v F u
27 25 26 sylbir F u x F u x v v x ¬ v F u
28 ssel x x v x v x
29 eluni v x f v f f x
30 28 29 syl6ib x x v x f v f f x
31 eleq2 F suc u = x f F suc u f x
32 31 biimparc f x F suc u = x f F suc u
33 1 2 23 4 inf3lemc u ω F suc u = G F u
34 33 eleq2d u ω f F suc u f G F u
35 elin v f x v f v x
36 vex f V
37 fvex F u V
38 1 2 36 37 inf3lema f G F u f x f x F u
39 38 simprbi f G F u f x F u
40 39 sseld f G F u v f x v F u
41 35 40 syl5bir f G F u v f v x v F u
42 34 41 syl6bi u ω f F suc u v f v x v F u
43 32 42 syl5 u ω f x F suc u = x v f v x v F u
44 43 com23 u ω v f v x f x F suc u = x v F u
45 44 exp5c u ω v f v x f x F suc u = x v F u
46 45 com34 u ω v f f x v x F suc u = x v F u
47 46 impd u ω v f f x v x F suc u = x v F u
48 47 exlimdv u ω f v f f x v x F suc u = x v F u
49 30 48 sylan9r u ω x x v x v x F suc u = x v F u
50 49 pm2.43d u ω x x v x F suc u = x v F u
51 id F suc u = x v F u F suc u = x v F u
52 51 necon3bd F suc u = x v F u ¬ v F u F suc u x
53 50 52 syl6 u ω x x v x ¬ v F u F suc u x
54 53 impd u ω x x v x ¬ v F u F suc u x
55 54 exlimdv u ω x x v v x ¬ v F u F suc u x
56 27 55 syl5 u ω x x F u x F u x F suc u x
57 24 56 sylani u ω x x u ω F u x F suc u x
58 57 exp4b u ω x x u ω F u x F suc u x
59 58 pm2.43a u ω x x F u x F suc u x
60 59 adantld u ω x x x F u x F suc u x
61 60 a2d u ω x x x F u x x x x F suc u x
62 7 10 13 16 22 61 finds A ω x x x F A x
63 62 com12 x x x A ω F A x