Metamath Proof Explorer


Theorem inficc

Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses inficc.a φA*
inficc.b φB*
inficc.s φSAB
inficc.n0 φS
Assertion inficc φsupS*<AB

Proof

Step Hyp Ref Expression
1 inficc.a φA*
2 inficc.b φB*
3 inficc.s φSAB
4 inficc.n0 φS
5 iccssxr AB*
6 5 a1i φAB*
7 3 6 sstrd φS*
8 infxrcl S*supS*<*
9 7 8 syl φsupS*<*
10 1 adantr φxSA*
11 2 adantr φxSB*
12 3 sselda φxSxAB
13 iccgelb A*B*xABAx
14 10 11 12 13 syl3anc φxSAx
15 14 ralrimiva φxSAx
16 infxrgelb S*A*AsupS*<xSAx
17 7 1 16 syl2anc φAsupS*<xSAx
18 15 17 mpbird φAsupS*<
19 n0 SxxS
20 4 19 sylib φxxS
21 9 adantr φxSsupS*<*
22 5 12 sselid φxSx*
23 7 adantr φxSS*
24 simpr φxSxS
25 infxrlb S*xSsupS*<x
26 23 24 25 syl2anc φxSsupS*<x
27 iccleub A*B*xABxB
28 10 11 12 27 syl3anc φxSxB
29 21 22 11 26 28 xrletrd φxSsupS*<B
30 29 ex φxSsupS*<B
31 30 exlimdv φxxSsupS*<B
32 20 31 mpd φsupS*<B
33 1 2 9 18 32 eliccxrd φsupS*<AB