Description: The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inficc.a | |
|
inficc.b | |
||
inficc.s | |
||
inficc.n0 | |
||
Assertion | inficc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inficc.a | |
|
2 | inficc.b | |
|
3 | inficc.s | |
|
4 | inficc.n0 | |
|
5 | iccssxr | |
|
6 | 5 | a1i | |
7 | 3 6 | sstrd | |
8 | infxrcl | |
|
9 | 7 8 | syl | |
10 | 1 | adantr | |
11 | 2 | adantr | |
12 | 3 | sselda | |
13 | iccgelb | |
|
14 | 10 11 12 13 | syl3anc | |
15 | 14 | ralrimiva | |
16 | infxrgelb | |
|
17 | 7 1 16 | syl2anc | |
18 | 15 17 | mpbird | |
19 | n0 | |
|
20 | 4 19 | sylib | |
21 | 9 | adantr | |
22 | 5 12 | sselid | |
23 | 7 | adantr | |
24 | simpr | |
|
25 | infxrlb | |
|
26 | 23 24 25 | syl2anc | |
27 | iccleub | |
|
28 | 10 11 12 27 | syl3anc | |
29 | 21 22 11 26 28 | xrletrd | |
30 | 29 | ex | |
31 | 30 | exlimdv | |
32 | 20 31 | mpd | |
33 | 1 2 9 18 32 | eliccxrd | |