| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infpnlem.1 |
|
| 2 |
|
nnre |
|
| 3 |
|
nnre |
|
| 4 |
|
lenlt |
|
| 5 |
2 3 4
|
syl2anr |
|
| 6 |
5
|
adantr |
|
| 7 |
|
nnnn0 |
|
| 8 |
|
facndiv |
|
| 9 |
1
|
oveq1i |
|
| 10 |
|
nnz |
|
| 11 |
9 10
|
eqeltrrid |
|
| 12 |
8 11
|
nsyl |
|
| 13 |
7 12
|
sylanl1 |
|
| 14 |
13
|
expr |
|
| 15 |
6 14
|
sylbird |
|
| 16 |
15
|
con4d |
|
| 17 |
16
|
expimpd |
|
| 18 |
17
|
adantrd |
|
| 19 |
7
|
faccld |
|
| 20 |
19
|
peano2nnd |
|
| 21 |
1 20
|
eqeltrid |
|
| 22 |
21
|
nncnd |
|
| 23 |
|
nndivtr |
|
| 24 |
23
|
ex |
|
| 25 |
24
|
3com13 |
|
| 26 |
25
|
3expa |
|
| 27 |
22 26
|
sylanl1 |
|
| 28 |
27
|
adantrl |
|
| 29 |
|
nnre |
|
| 30 |
|
letri3 |
|
| 31 |
29 2 30
|
syl2an |
|
| 32 |
31
|
biimprd |
|
| 33 |
32
|
exp4b |
|
| 34 |
33
|
com3l |
|
| 35 |
34
|
imp32 |
|
| 36 |
35
|
adantll |
|
| 37 |
36
|
imim2d |
|
| 38 |
37
|
com23 |
|
| 39 |
28 38
|
sylan2d |
|
| 40 |
39
|
exp4d |
|
| 41 |
40
|
com24 |
|
| 42 |
41
|
exp32 |
|
| 43 |
42
|
com24 |
|
| 44 |
43
|
imp31 |
|
| 45 |
44
|
com14 |
|
| 46 |
45
|
3imp |
|
| 47 |
46
|
com3l |
|
| 48 |
47
|
ralimdva |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
adantld |
|
| 51 |
50
|
impd |
|
| 52 |
|
prime |
|
| 53 |
52
|
adantl |
|
| 54 |
51 53
|
sylibrd |
|
| 55 |
18 54
|
jcad |
|